Skip to main content

Tight Interplay Between Therapeutic Monoclonal Antibodies and the Tumour Microenvironment in Cancer Therapy

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1277))

Abstract

Therapeutic monoclonal antibodies (mAb) have changed the landscape of cancer therapy. With advances in the understanding of tumour biology and its microenvironment, different categories of mAbs have been developed; a first category is directed against tumour cells themselves, a second one comprises antibodies blocking the formation of neo-vasculature that accompanies tumour development, and, during the last decades, a third new category of immunomodulatory antibodies that target immune cells in the tumour microenvironment rather than cancer cells has emerged. In this chapter, we outline the main mechanisms of action of the different anti-tumour antibodies. We discuss the notion that, rather than passive immunotherapy that solely induces tumour cell killing, mAbs have multifaceted effects on the tumour microenvironment and could, qualitatively and quantitatively, reshape the immune infiltrate. We also discuss bystander effects of mAbs on the tumour microenvironment that should be carefully considered for the design of new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Old LJ, Boyse EA, Stockert E (1964) Typing of mouse leukemias by serological methods. Nature 201:777–7779

    Article  CAS  Google Scholar 

  2. Boyse EA, Old LJ, Luell S (1964) Genetic determination of the TL (thymus-leukemia) antigen in the mouse. Nature 201:779

    Article  CAS  Google Scholar 

  3. Schechter AL, Stern DF, Vaidyanathan L et al (1984) The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 312:513–516

    Article  CAS  Google Scholar 

  4. Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  CAS  Google Scholar 

  5. Siddiqui J, Abe M, Hayes D et al (1988) Isolation and sequencing of a cDNA coding for the human DF3 breast carcinoma-associated antigen. Proc Natl Acad Sci U S A 85:2320–2323

    Article  CAS  Google Scholar 

  6. Thompson J, Zimmermann W (1988) The carcinoembryonic antigen gene family: structure, expression and evolution. Tumour Biol 9:63–83

    Article  CAS  Google Scholar 

  7. Gendler SJ, Lancaster CA, Taylor-Papadimitriou J et al (1990) Molecular cloning and expression of human tumour-associated polymorphic epithelial mucin. J Biol Chem 265:15286–15293

    CAS  Google Scholar 

  8. Ide AG, Baker NH, Warren SL (1939) Vascularization of the Brown-Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am J Roentgenol 42:891–899

    Google Scholar 

  9. Algire GH, Chalkley HW, Earle WE et al (1950) Vascular reactions of normal and malignant tissues in vivo. III. Vascular reactions’ of mice to fibroblasts treated in vitro with methylcholanthrene. J Natl Cancer Inst 11:555–580

    CAS  Google Scholar 

  10. Folkman J (1971) Tumour angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  Google Scholar 

  11. Ferrara N, Hillan KJ, Gerber HP et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  CAS  Google Scholar 

  12. de Aguiar RB, de Moraes JZ (2019) Exploring the immunological mechanisms underlying the anti-vascular endothelial growth factor activity in tumours. Front Immunol 10:1023. https://doi.org/10.3389/fimmu.2019.01023

    Article  CAS  Google Scholar 

  13. Fridman WH, Zitvogel L, Sautès-Fridman C et al (2017) The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 14:717–734. https://doi.org/10.1038/nrclinonc.2017.101

    Article  CAS  Google Scholar 

  14. Giraldo NA, Sanchez-Salas R, Peske JD et al (2019) The clinical role of the TME in solid cancer. Br J Cancer 120:45–53. https://doi.org/10.1038/s41416-018-0327-z

    Article  Google Scholar 

  15. Burnet M (1957) Cancer; a biological approach. I. The processes of control. Br Med J 1:779–786

    Article  CAS  Google Scholar 

  16. Prehn RT, Main JM (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18:769–778

    CAS  Google Scholar 

  17. Traversari C, van der Bruggen P, Luescher IF et al (1992) A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumour antigen MZ2-E. J Exp Med 176:1453–1457

    Article  CAS  Google Scholar 

  18. Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumour escape. Nat Immunol 3:991–998

    Article  CAS  Google Scholar 

  19. Fridman WH, Dieu-Nosjean MC, Pagès F et al (2013) The immune microenvironment of human tumours: general significance and clinical impact. Cancer Microenviron 6:117–122. https://doi.org/10.1007/s12307-012-0124-9

    Article  CAS  Google Scholar 

  20. Dieu-Nosjean MC, Giraldo NA, Kaplon H et al (2016) Tertiary lymphoid structures, drivers of the anti-tumour responses in human cancers. Immunol Rev 271:260–275. https://doi.org/10.1111/imr.12405

    Article  CAS  Google Scholar 

  21. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489. https://doi.org/10.1038/nature10673

    Article  CAS  Google Scholar 

  22. Kwon ED, Hurwitz AA, Foster BA et al (1997) Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci U S A 94:8099–8103

    Article  CAS  Google Scholar 

  23. Iwai Y, Ishida M, Tanaka Y et al (2002) Involvement of PD-L1 on tumour cells in the escape from host immune system and tumour immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 99:12293–12297

    Article  CAS  Google Scholar 

  24. Ross JS, Torres-Mora J, Wagle N et al (2010) Biomarker-based prediction of response to therapy for colorectal cancer: current perspective. Am J Clin Pathol 134:478–490. https://doi.org/10.1309/AJCP2Y8KTDPOAORH

    Article  Google Scholar 

  25. Yang J, Yan J, Liu B (2018) Targeting VEGF/VEGFR to modulate antitumour immunity. Front Immunol 9:978. https://doi.org/10.3389/fimmu.2018.00978

    Article  CAS  Google Scholar 

  26. Dahal LN, Roghanian A, Beers SA et al (2015) FcγR requirements leading to successful immunotherapy. Immunol Rev 268:104–122. https://doi.org/10.1111/imr.12342

    Article  CAS  Google Scholar 

  27. Manches O, Lui G, Chaperot L et al (2003) In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood 101:949–954

    Article  CAS  Google Scholar 

  28. Shi Y, Fan X, Deng H et al (2015) Trastuzumab triggers phagocytic killing of high HER2 cancer cells in vitro and in vivo by interaction with Fcγ receptors on macrophages. J Immunol 194:4379–4386. https://doi.org/10.4049/jimmunol.1402891

    Article  CAS  Google Scholar 

  29. Kang TH, Lee CH, Delidakis G et al (2019) An engineered human fc variant with exquisite selectivity for FcγRIIIaV158 reveals that ligation of FcγRIIIa mediates potent antibody dependent cellular phagocytosis with GM-CSF-differentiated macrophages. Front Immunol 10:562. https://doi.org/10.3389/fimmu.2019.00562

    Article  CAS  Google Scholar 

  30. Triulzi T, Regondi V, De Cecco L et al (2018) Early immune modulation by single-agent trastuzumab as a marker of trastuzumab benefit. Br J Cancer 119:1487–1494. https://doi.org/10.1038/s41416-018-0318-0

    Article  CAS  Google Scholar 

  31. Honkanen TJ, Tikkanen A, Karihtala P et al (2019) Prognostic and predictive role of tumour-associated macrophages in HER2 positive breast cancer. Sci Rep 9:10961. https://doi.org/10.1038/s41598-019-47375-2

    Article  CAS  Google Scholar 

  32. Uchida J, Hamaguchi Y, Oliver JA et al (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199:1659–1669

    Article  CAS  Google Scholar 

  33. Cartron G, Dacheux L, Salles G et al (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758

    Article  CAS  Google Scholar 

  34. Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940–3947

    Article  CAS  Google Scholar 

  35. Musolino A, Naldi N, Bortesi B et al (2008) Immuno-globulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26:1789–1796. https://doi.org/10.1200/JCO.2007.14.8957

    Article  CAS  Google Scholar 

  36. Tamura K, Shimizu C, Hojo T et al (2011) FcγR2A and 3A polymorphisms predict clinical outcome of trastuzumab in both neoad-juvant and metastatic settings in patients with HER2-positive breast cancer. Ann Oncol 22:1302–1307. https://doi.org/10.1093/annonc/mdq585

    Article  CAS  Google Scholar 

  37. Zhang W, Gordon M, Schultheis AM et al (2007) FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol 25:3712–3718

    Article  CAS  Google Scholar 

  38. Bibeau F, Lopez-Crapez E, Di Fiore F et al (2009) Impact of Fc{gamma}RIIa-Fc{gamma}RIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol 27:1122–1129. https://doi.org/10.1200/JCO.2008.18.0463

    Article  CAS  Google Scholar 

  39. Hurvitz SA, Betting DJ, Stern HM et al (2012) Analysis of Fcγ receptor IIIa and IIa polymorphisms: lack of correlation with outcome in trastuzumab-treated breast cancer patients. Clin Cancer Res 18:3478–3486. https://doi.org/10.1158/1078-0432.CCR-11-2294

    Article  CAS  Google Scholar 

  40. Chen X, Song X, Li K et al (2019) FcγR-binding is an important functional attribute for immune checkpoint antibodies in cancer immunotherapy. Front Immunol 10:292. https://doi.org/10.3389/fimmu.2019.00292

    Article  CAS  Google Scholar 

  41. Simpson TR, Li F, Montalvo-Ortiz W et al (2013) Fc-dependent depletion of tumour-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 210:1695–1710. https://doi.org/10.1084/jem.20130579

    Article  CAS  Google Scholar 

  42. Bulliard Y, Jolicoeur R, Windman M et al (2013) Activating Fc γ receptors contribute to the antitumour activities of immunoregulatory receptor-targeting antibodies. J Exp Med 210:1685–1693. https://doi.org/10.1084/jem.20130573

    Article  CAS  Google Scholar 

  43. Bulliard Y, Jolicoeur R, Zhang J et al (2014) OX40 engagement depletes intratumoural Tregs via activating FcγRs, leading to antitumour efficacy. Immunol Cell Biol 92:475–480. https://doi.org/10.1038/icb.2014.26

    Article  CAS  Google Scholar 

  44. Selby MJ, Engelhardt JJ, Quigley M et al (2013) Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumour activity through reduction of intratumoural regulatory T cells. Cancer Immunol Res 1:32–42. https://doi.org/10.1158/2326-6066.CIR-13-0013

    Article  CAS  Google Scholar 

  45. Romano E, Kusio-Kobialka M, Foukas PG et al (2015) Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci U S A 112:6140–6145. https://doi.org/10.1073/pnas.1417320112

    Article  CAS  Google Scholar 

  46. Waight JD, Chand D, Dietrich S et al (2018) Selective FcγR co-engagement on APCs modulates the activity of therapeutic antibodies targeting T cell antigens. Cancer Cell 33:1033–1047.e5. https://doi.org/10.1016/j.ccell.2018.05.005

    Article  CAS  Google Scholar 

  47. Deligne C, Siberil S, Teillaud JL (2014) The vaccinal effect of monoclonal antibodies in cancer therapy. In: Rees RC (ed) Tumour immunology and immunotherapy. Oxford University Press, Oxford, pp 357–371

    Google Scholar 

  48. Noujaim AA, Schultes BC, Baum RP et al (2001) Induction of CA125-specific B and T cell responses in patients injected with MAb-B43.13 – evidence for antibody-mediated antigen-processing and presentation of CA125 in vivo. Cancer Biother Radiopharm 16:187–203

    Article  CAS  Google Scholar 

  49. de Bono JS, Rha SY, Stephenson J et al (2004) Phase I trial of a murine antibody to MUC1 in patients with metastatic cancer: evidence for the activation of humoral and cellular antitumour immunity. Ann Oncol 15:1825–1833

    Article  Google Scholar 

  50. Taylor C, Hershman D, Shah N et al (2007) Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy. Clin Cancer Res 13:5133–5143

    Article  CAS  Google Scholar 

  51. Knutson KL, Clynes R, Shreeder B et al (2016) Improved survival of HER2+ breast cancer patients treated with trastuzumab and chemotherapy is associated with host antibody immunity against the HER2 intracellular domain. Cancer Res 76:3702–3710. https://doi.org/10.1158/0008-5472.CAN-15-3091

    Article  CAS  Google Scholar 

  52. Srivastava RM, Lee SC, Andrade Filho PA et al (2013) Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumour antigen-specific T-cell immunity in head and neck cancer patients. Clin Cancer Res 19:1858–1872. https://doi.org/10.1158/1078-0432.CCR-12-2426

    Article  CAS  Google Scholar 

  53. Abès R, Gélizé E, Fridman WH et al (2010) Long-lasting antitumour protection by anti-CD20 antibody through cellular immune response. Blood 116:926–934. https://doi.org/10.1182/blood-2009-10-248609

    Article  CAS  Google Scholar 

  54. Deligne C, Metidji A, Fridman WH et al (2015) Anti-CD20 therapy induces a memory Th1 response through the IFN-γ/IL-12 axis and prevents protumour regulatory T-cell expansion in mice. Leukemia 29:947–957. https://doi.org/10.1038/leu.2014.275

    Article  CAS  Google Scholar 

  55. DiLillo DJ, Ravetch JV (2015) Differential Fc-receptor engagement drives an anti-tumour vaccinal effect. Cell 161:1035–1045. https://doi.org/10.1016/j.cell.2015.04.016

    Article  CAS  Google Scholar 

  56. Ren Z, Guo J, Liao J et al (2017) CTLA-4 limits anti-CD20-mediated tumour regression. Clin Cancer Res 23:193–203. https://doi.org/10.1158/1078-0432.CCR-16-0040

    Article  CAS  Google Scholar 

  57. Park S, Jiang Z, Mortenson ED et al (2010) The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18:160–170. https://doi.org/10.1016/j.ccr.2010.06.014

    Article  CAS  Google Scholar 

  58. Mortenson ED, Park S, Jiang Z et al (2013) Effective anti-neu-initiated antitumour responses require the complex role of CD4+ T cells. Clin Cancer Res 19:1476–1486. https://doi.org/10.1158/1078-0432.CCR-12-2522

    Article  CAS  Google Scholar 

  59. Stagg J, Sharkey J, Pommey S et al (2008) Antibodies targeted to TRAIL receptor-2 and ErbB-2 synergize in vivo and induce an antitumour immune response. Proc Natl Acad Sci U S A 105:16254–16259. https://doi.org/10.1073/pnas.0806849105

    Article  Google Scholar 

  60. Stagg J, Loi S, Divisekera U et al (2011) Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci U S A 108:7142–7147. https://doi.org/10.1073/pnas.1016569108

    Article  CAS  Google Scholar 

  61. Yang X, Zhang X, Mortenson ED et al (2013) Cetuximab-mediated tumour regression depends on innate and adaptive immune responses. Mol Ther 21:91–100. https://doi.org/10.1038/mt.2012.184

    Article  CAS  Google Scholar 

  62. Dhodapkar KM, Krasovsky J, Williamson B et al (2002) Antitumour monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J Exp Med 195:125–133

    Article  CAS  Google Scholar 

  63. Moeller I, Spagnoli GC, Finke J et al (2012) Uptake routes of tumour-antigen MAGE-A3 by dendritic cells determine priming of naïve T-cell subtypes. Cancer Immunol Immunother 61:2079–2090. https://doi.org/10.1007/s00262-012-1272-y

    Article  CAS  Google Scholar 

  64. Selenko N, Maidic O, Draxier S et al (2001) CD20 antibody (C2B8)-induced apoptosis of lymphoma cells promotes phagocytosis by dendritic cells and cross-priming of CD8+ cytotoxic T cells. Leukemia 15:1619–1626

    Article  CAS  Google Scholar 

  65. Banerjee D, Matthews P, Matayeva E et al (2008) Enhanced T-cell responses to glioma cells coated with the anti-EGF receptor antibody and targeted to activating FcgammaRs on human dendritic cells. J Immunother 31:113–120. https://doi.org/10.1097/CJI.0b013e31815a5892

    Article  CAS  Google Scholar 

  66. Lee SC, Srivastava RM, López-Albaitero A et al (2011) Natural killer (NK): dendritic cell (DC) cross talk induced by therapeutic monoclonal antibody triggers tumour antigen-specific T cell immunity. Immunol Res 50:248–254. https://doi.org/10.1007/s12026-011-8231-0

    Article  CAS  Google Scholar 

  67. Jaime-Ramirez AC, Mundy-Bosse BL, Kondadasula S et al (2011) IL-12 enhances the antitumour actions of trastuzumab via NK cell IFN-γ production. J Immunol 186:3401–3409. https://doi.org/10.4049/jimmunol.1000328

    Article  CAS  Google Scholar 

  68. Barrio MM, Abes R, Colombo M et al (2012) Human macrophages and dendritic cells can equally present MART-1 antigen to CD8(+) T cells after phagocytosis of gamma-irradiated melanoma cells. PLoS One 7:e40311. https://doi.org/10.1371/journal.pone.0040311

    Article  CAS  Google Scholar 

  69. Velthuis JH, Unger WW, Abreu JR et al (2010) Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes 59:1721–1730

    Article  CAS  Google Scholar 

  70. Delluc S, Ravot G, Maillere B (2010) Quantification of the preexisting CD4 T-cell repertoire specific for human erythropoietin reveals its immunogenicity potential. Blood 116:4542–4545

    Article  CAS  Google Scholar 

  71. Yu W, Jiang N, Ebert PJ et al (2015) Clonal deletion prunes but does not eliminate self-specific αβ CD8(+) T lymphocytes. Immunity 42:929–941

    Article  CAS  Google Scholar 

  72. Chevaleyre C, Benhamouda N, Favry E et al (2015) The tumour antigen cyclin B1 hosts multiple CD4 T cell epitopes differently recognized by pre-existing naive and memory cells in both healthy and cancer donors. J Immunol 195:1891–1901

    Article  CAS  Google Scholar 

  73. Milcent B, Josseaume N, Riller Q et al (2019) Presence of T cells directed against CD20-derived peptides in healthy individuals and lymphoma patients. Cancer Immunol Immunother 68:1561–1572. https://doi.org/10.1007/s00262-019-02389-7

    Article  CAS  Google Scholar 

  74. Korman AJ, Peggs KS, Allison JP (2006) Checkpoint blockade in cancer immunotherapy. Adv Immunol 90:297–339

    Article  CAS  Google Scholar 

  75. Khalil DN, Smith EL, Brentjens RJ et al (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13:273–290. https://doi.org/10.1038/nrclinonc.2016.25

    Article  CAS  Google Scholar 

  76. Seidel JA, Otsuka A, Kabashima K (2018) Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol 8:86. https://doi.org/10.3389/fonc.2018.00086

    Article  Google Scholar 

  77. Riaz N, Havel JJ, Makarov V et al (2017) Tumour and microenvironment evolution during immunotherapy with nivolumab. Cell 171:934–949.e16. https://doi.org/10.1016/j.cell.2017.09.028

    Article  CAS  Google Scholar 

  78. Chen PL, Roh W, Reuben A et al (2016) Analysis of immune signatures in longitudinal tumour samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 6:827–837. https://doi.org/10.1158/2159-8290.CD-15-1545

    Article  CAS  Google Scholar 

  79. Ji RR, Chasalow SD, Wang L et al (2012) An immune-active tumour microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 61:1019–1031. https://doi.org/10.1007/s00262-011-1172-6

    Article  CAS  Google Scholar 

  80. Gubin MM, Esaulova E, Ward JP et al (2018) High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 175:1014–1030.e19. https://doi.org/10.1016/j.cell.2018.09.030

    Article  CAS  Google Scholar 

  81. Wei SC, Levine JH, Cogdill AP et al (2017) Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170:1120–1133.e17. https://doi.org/10.1016/j.cell.2017.07.024

    Article  CAS  Google Scholar 

  82. Fehlings M, Simoni Y, Penny HL et al (2017) Checkpoint blockade immunotherapy reshapes the high-dimensional phenotypic heterogeneity of murine intratumoural neoantigen-specific CD8+ T cells. Nat Commun 8:562. https://doi.org/10.1038/s41467-017-00627-z

    Article  CAS  Google Scholar 

  83. van Rooij N, van Buuren MM, Philips D et al (2013) Tumour exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31:e439–e442. https://doi.org/10.1200/JCO.2012.47.7521

    Article  Google Scholar 

  84. Rizvi NA, Hellmann MD, Snyder A et al (2015) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128. https://doi.org/10.1126/science.aaa1348

    Article  CAS  Google Scholar 

  85. Kvistborg P, Philips D, Kelderman S et al (2014) Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci Transl Med 6:254ra128. https://doi.org/10.1126/scitranslmed.3008918

    Article  CAS  Google Scholar 

  86. Ghoneim HE, Fan Y, Moustaki A et al (2017) De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170:142–157.e19. https://doi.org/10.1016/j.cell.2017.06.007

    Article  CAS  Google Scholar 

  87. Pauken KE, Sammons MA, Odorizzi PM et al (2016) Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354:1160–1165

    Article  CAS  Google Scholar 

  88. Philip M, Fairchild L, Sun L et al (2017) Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545:452–456. https://doi.org/10.1038/nature22367

    Article  CAS  Google Scholar 

  89. Scott-Browne JP, López-Moyado IF, Trifari S et al (2016) Dynamic changes in chromatin accessibility occur in CD8+ T cells responding to viral infection. Immunity 45:1327–1340. https://doi.org/10.1016/j.immuni.2016.10.028

    Article  CAS  Google Scholar 

  90. Sen DR, Kaminski J, Barnitz RA et al (2016) The epigenetic landscape of T cell exhaustion. Science 354:1165–1169

    Article  CAS  Google Scholar 

  91. Kurtulus S, Madi A, Escobar G et al (2019) Checkpoint blockade immunotherapy induces dynamic changes in PD-1-CD8+ tumour-infiltrating T cells. Immunity 50:181–194.e6. https://doi.org/10.1016/j.immuni.2018.11.014

    Article  CAS  Google Scholar 

  92. Beatty GL, Chiorean EG, Fishman MP et al (2011) CD40 agonists alter tumour stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331:1612–1616. https://doi.org/10.1126/science.1198443

    Article  CAS  Google Scholar 

  93. Bouchlaka MN, Sckisel GD, Chen M et al (2013) Aging predisposes to acute inflammatory induced pathology after tumour immunotherapy. J Exp Med 210:2223–2237. https://doi.org/10.1084/jem.20131219

    Article  CAS  Google Scholar 

  94. Mirsoian A, Bouchlaka MN, Sckisel GD et al (2014) Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice. J Exp Med 211:2373–2383. https://doi.org/10.1084/jem.20140116

    Article  Google Scholar 

  95. Tol J, Koopman M, Cats A et al (2009) Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360:563–572. https://doi.org/10.1056/NEJMoa0808268

    Article  CAS  Google Scholar 

  96. Pander J, Heusinkveld M, van der Straaten T et al (2011) Activation of tumour-promoting type 2 macrophages by EGFR-targeting antibody cetuximab. Clin Cancer Res 17:5668–5673. https://doi.org/10.1158/1078-0432.CCR-11-0239

    Article  CAS  Google Scholar 

  97. Castro BA, Flanigan P, Jahangiri A et al (2017) Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy. Oncogene 36:3749–3759. https://doi.org/10.1038/onc.2017.1

    Article  CAS  Google Scholar 

  98. Choi S, Kim HR, Leng L et al (2012) Role of macrophage migration inhibitory factor in the regulatory T cell response of tumour-bearing mice. J Immunol 189:3905–3913. https://doi.org/10.4049/jimmunol.1102152

    Article  CAS  Google Scholar 

  99. Balogh KN, Templeton DJ, Cross JV (2018) Macrophage Migration Inhibitory Factor protects cancer cells from immunogenic cell death and impairs anti-tumour immune responses. PLoS One 13:e0197702. https://doi.org/10.1371/journal.pone.0197702

    Article  CAS  Google Scholar 

  100. Simpson KD, Templeton DJ, Cross JV (2012) Macrophage migration inhibitory factor promotes tumour growth and metastasis by inducing myeloid-derived suppressor cells in the tumour microenvironment. J Immunol 189:5533–5540. https://doi.org/10.4049/jimmunol.1201161

    Article  CAS  Google Scholar 

  101. Gao J, Ward JF, Pettaway CA et al (2017) VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med 23:551–555. https://doi.org/10.1038/nm.4308

    Article  CAS  Google Scholar 

  102. Su S, Zhao J, Xing Y et al (2018) Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell 175:442–457.e23. https://doi.org/10.1016/j.cell.2018.09.007

    Article  CAS  Google Scholar 

  103. Dahan R, Sega E, Engelhardt J et al (2015) FcγRs modulate the anti-tumour activity of antibodies targeting the PD-1/PD-L1 axis. Cancer Cell 28:285–295. https://doi.org/10.1016/j.ccell.2015.08.004

    Article  CAS  Google Scholar 

  104. Arlauckas SP, Garris CS, Kohler RH et al (2017) In vivo imaging reveals a tumour-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med 9(389):pii: eaal3604. https://doi.org/10.1126/scitranslmed.aal3604

    Article  Google Scholar 

  105. Lo Russo G, Moro M, Sommariva M et al (2019) Antibody-Fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade. Clin Cancer Res 25:989–999. https://doi.org/10.1158/1078-0432.CCR-18-1390

    Article  CAS  Google Scholar 

  106. Corraliza-Gorjón I, Somovilla-Crespo B, Santamaria S et al (2017) New strategies using antibody combinations to increase cancer treatment effectiveness. Front Immunol 8:1804. https://doi.org/10.3389/fimmu.2017.01804

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Sibéril .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riller, Q., Varthaman, A., Sibéril, S. (2020). Tight Interplay Between Therapeutic Monoclonal Antibodies and the Tumour Microenvironment in Cancer Therapy. In: Birbrair, A. (eds) Tumor Microenvironment . Advances in Experimental Medicine and Biology, vol 1277. Springer, Cham. https://doi.org/10.1007/978-3-030-50224-9_9

Download citation

Publish with us

Policies and ethics