Skip to main content

Agent-Based Modelling: A Bridge Between Psychology and Macro-social Science

  • Chapter
  • First Online:
Macropsychology

Abstract

Agent-based modelling is the practice of creating artificial agents and environments and monitoring how these interact over time. This provides a computational framework to study how individual agents influence and are influenced by the social systems that result from their interactions. These methods are useful to macropsychologists, as they might serve as a bridge between traditional, small-scale behavioural science and large-scale social and societal systems. The aim of this chapter is to provide the reader with a sense of how agent-based models and modelling can be used to generate novel insights by scaling up basic psychological processes in artificial environments. We will illustrate this process with an early and influential case study of agent-based modelling: how simulations of the iterated prisoner’s dilemma informed thinking about how cooperation is established, promoted, and challenged in society. We hope this provides an illustrative example of how agent-based modelling can be used and how these methods have matured over time. We conclude by moving beyond cooperation, to two contemporary examples which highlight how agent-based modelling can speak to issues that macropsychologists care about such as how to strengthen democratic societies and how to minimise structural bias against minorities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.

    Google Scholar 

  • Axelrod, R. (1997). The complexity of cooperation: Agent-based models of competition and collaboration. Princeton University Press. 41 William Street, Princeton, NJ.

    Google Scholar 

  • Axelrod, R., & Dion, D. (1988). The further evolution of cooperation. Science, 242(4884), 1385–1390.

    Article  PubMed  Google Scholar 

  • Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211(4489), 1390–1396.

    Article  PubMed  Google Scholar 

  • Baldassarri, D., & Grossman, G. (2011). Centralized sanctioning and legitimate authority promote cooperation in humans. Proceedings of the National Academy of Sciences, 108(27), 11023–11027.

    Article  Google Scholar 

  • Bendor, J., & Mookherjee, D. (1987). Institutional structure and the logic of ongoing collective action. American Political Science Review, 81(1), 129–154.

    Article  Google Scholar 

  • Boysen, S. T., & Capaldi, E. J. (2014). The development of numerical competence: Animal and human models. New York: Psychology Press.

    Book  Google Scholar 

  • Brown, M., Falk, A., & Fehr, E. (2004). Relational contracts and the nature of market interactions. Econometrica, 72(3), 747–780.

    Article  Google Scholar 

  • Bshary, R., & Grutter, A. S. (2006). Image scoring and cooperation in a cleaner fish mutualism. Nature, 441(7096), 975.

    Article  PubMed  Google Scholar 

  • Cosmides, L. (1989). The logic of social exchange: Has natural selection shaped how humans reason? Studies with the Wason selection task. Cognition, 31(3), 187–276.

    Article  PubMed  Google Scholar 

  • Dugatkin, L. A. (1997). Cooperation among animals: An evolutionary perspective. New York: Oxford University Press on Demand.

    Google Scholar 

  • Dunbar, R., & Dunbar, R. I. M. (1998). Grooming, gossip, and the evolution of language. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up. Brookings Institution Press. Washington DC.

    Google Scholar 

  • Fehr, E., & Gächter, S. (2002). Altruistic punishment in humans. Nature, 415(6868), 137.

    Article  PubMed  Google Scholar 

  • Fiddick, L. (2004). Domains of deontic reasoning: Resolving the discrepancy between the cognitive and moral reasoning literatures. Quarterly Journal of Experimental Psychology Section A, 57(3), 447–474.

    Article  Google Scholar 

  • Fudenberg, D., Rand, D. G., & Dreber, A. (2012). Slow to anger and fast to forgive: Cooperation in an uncertain world. American Economic Review, 102(2), 720–49.

    Google Scholar 

  • Green, L., Myerson, J., Holt, D. D., Slevin, J. R., & Estle, S. J. (2004). Discounting of delayed food rewards in pigeons and rats: Is there a magnitude effect? Journal of the Experimental Analysis of Behavior, 81(1), 39–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton, W. D. (1964). The genetical evolution of social behaviour. II. Journal of Theoretical Biology, 7(1), 17–52.

    Article  PubMed  Google Scholar 

  • Harari, Y. N. (2014). Sapiens: A brief history of humankind. Random House, Toronto, Canada

    Google Scholar 

  • Imhof, L. A., Fudenberg, D., & Nowak, M. A. (2007). Tit-for-tat or win-stay, lose-shift? Journal of Theoretical Biology, 247(3), 574–580.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jordan, J. J., Hoffman, M., Bloom, P., & Rand, D. G. (2016). Third-party punishment as a costly signal of trustworthiness. Nature, 530(7591), 473.

    Article  PubMed  Google Scholar 

  • Joshi, N. (1987). Evolution of cooperation by reciprocation within structured demes. Journal of Genetics, 66(1), 69–84.

    Article  Google Scholar 

  • Kennedy, W. G., & Bassett, J. K. (2011). Implementing a “fast and frugal” cognitive model within a computational social simulation. Presented at the proceedings of the second annual meeting of the computational social science Society of the Americas, http://citeseerx.ist.psu.edu/viewdoc/download

  • Kennedy, W. G., Cotla, C. R., Gulden, T., Coletti, M., & Cioffi-Revilla, C. (2014). Towards validating a model of households and societies in East Africa. In Advances in computational social science (pp. 315–328). New York: Springer.

    Chapter  Google Scholar 

  • Kreps, D. M., Milgrom, P., Roberts, J., & Wilson, R. (1982). Rational cooperation in the finitely repeated prisoners’ dilemma. Journal of Economic Theory, 27(2), 245–252.

    Article  Google Scholar 

  • Le Blanc, D., Liu, W., O’Connor, D., & Zubcevic, I. (2012). Development cooperation in the light of sustainable development and the SDGs: Preliminary exploration of the issues. DAES. https://sustainabledevelopment.un.org/content/documents/761workingpaper3.pdf

  • MacLachlan, M. (2014). Macropsychology, policy, and global health. American Psychologist, 69(8), 851.

    Article  PubMed  Google Scholar 

  • Milinski, M. (1987). Tit for tat in sticklebacks and the evolution of cooperation. Nature, 325(6103), 433.

    Article  PubMed  Google Scholar 

  • Molander, P. (1985). The optimal level of generosity in a selfish, uncertain environment. Journal of Conflict Resolution, 29(4), 611–618.

    Article  Google Scholar 

  • Momennejad, I., Sinclair, S., & Cikara, M. (2019). Computational justice: Simulating structural bias and interventions. BioRxiv. https://doi.org/10.1101/776211

  • Nowak, M., & Sigmund, K. (1993). A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game. Nature, 364, 56.

    Article  PubMed  Google Scholar 

  • Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science, 314(5805), 1560–1563.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowak, M. A., & Sigmund, K. (1998). The dynamics of indirect reciprocity. Journal of theoretical Biology, 194(4), 561–574.

    Google Scholar 

  • Nowak, M. A., & Sigmund, K. (2005). Evolution of indirect reciprocity. Nature, 437(7063), 1291–298.

    Google Scholar 

  • Ohtsuki, H., Hauert, C., Lieberman, E., & Nowak, M. A. (2006). A simple rule for the evolution of cooperation on graphs and social networks. Nature, 441(7092), 502.

    Article  PubMed  PubMed Central  Google Scholar 

  • Osborne, M. J. (2004). An introduction to game theory (Vol. 3). New York: Oxford University Press.

    Google Scholar 

  • Perc, M., & Szolnoki, A. (2010). Coevoyhlutionary games—A mini review. Biosystems, 99(2), 109–125. https://doi.org/10.1016/j.biosystems.2009.10.003

    Article  PubMed  Google Scholar 

  • Pettit, P. (1986). Free riding and foul dealing. The Journal of Philosophy, 83(7), 361–379.

    Article  Google Scholar 

  • Rand, D. G., Ohtsuki, H., & Nowak, M. A. (2009). Direct reciprocity with costly punishment: Generous tit-for-tat prevails. Journal of Theoretical Biology, 256(1), 45–57.

    Article  PubMed  Google Scholar 

  • Rapoport, A., Seale, D. A., & Colman, A. M. (2015). Is tit-for-tat the answer? On the conclusions drawn from Axelrod’s tournaments. PLoS One, 10(7), e0134128. https://doi.org/10.1371/journal.pone.0134128

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubinstein, A. (1980). Strong perfect equilibrium in supergames. International Journal of Game Theory, 9(1), 1–12.

    Article  Google Scholar 

  • Schelling, T. C. (1969). Models of segregation. The American Economic Review, 59(2), 488–493.

    Google Scholar 

  • Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(2), 143–186.

    Article  Google Scholar 

  • Segerstrom, P. S. (1988). Demons and repentance. Journal of Economic Theory, 45(1), 32–52.

    Article  Google Scholar 

  • Stevens, J. R., & Hauser, M. D. (2004). Why be nice? Psychological constraints on the evolution of cooperation. Trends in Cognitive Sciences, 8(2), 60–65. https://doi.org/10.1016/j.tics.2003.12.003

    Article  PubMed  Google Scholar 

  • Stewart, A. J., Mosleh, M., Diakonova, M., Arechar, A. A., Rand, D. G., & Plotkin, J. B. (2019). Information gerrymandering and undemocratic decisions. Nature, 573(7772), 117–121.

    Article  PubMed  Google Scholar 

  • Tarantola, T., Kumaran, D., Dayan, P., & De Martino, B. (2017). Prior preferences beneficially influence social and non-social learning. Nature Communications, 8(1), 817.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trivers, R. L. (1971). The evolution of reciprocal altruism. The Quarterly Review of Biology, 46(1), 35–57.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323.

    Article  Google Scholar 

  • Wedekind, C., & Milinski, M. (2000). Cooperation through image scoring in humans. Science, 288(5467), 850–852.

    Article  PubMed  Google Scholar 

  • West, S. A., El Mouden, C., & Gardner, A. (2011). Sixteen common misconceptions about the evolution of cooperation in humans. Evolution and Human Behavior, 32(4), 231–262.

    Article  Google Scholar 

  • West, S. A., Griffin, A. S., & Gardner, A. (2007). Evolutionary explanations for cooperation. Current Biology, 17(16), R661–R672.

    Article  PubMed  Google Scholar 

  • Wilensky, U., & Rand, W. (2015). An introduction to agent-based modeling: Modeling natural, social and engineered complex systems with NetLogo. Cambridge, MA: MIT Press..

    Google Scholar 

  • Wu, J., & Axelrod, R. (1995). How to cope with noise in the iterated prisoner’s dilemma. Journal of Conflict Resolution, 39(1), 183–189.

    Article  Google Scholar 

  • Wilensky, U. (1997). NetLogo Segregation model. http://ccl.northwestern.edu/netlogo/models/Segregation. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

    Google Scholar 

  • Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

    Google Scholar 

  • Yamagishi, T. (1986). The provision of a sanctioning system as a public good. Journal of Personality and Social Psychology, 51(1), 110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Folke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Folke, T., Kennedy, W.G. (2021). Agent-Based Modelling: A Bridge Between Psychology and Macro-social Science. In: MacLachlan, M., McVeigh, J. (eds) Macropsychology. Springer, Cham. https://doi.org/10.1007/978-3-030-50176-1_8

Download citation

Publish with us

Policies and ethics