Skip to main content

Advancement in CdIn2Se4/CdTe Based Photoelectrochemical Solar Cells

  • Chapter
  • First Online:
Advances in Energy Materials

Part of the book series: Advances in Material Research and Technology ((AMRT))

Abstract

Many binary and ternary chalcogenide semiconductor materials (viz CdS, CdSe, CdTe, CdZnTe, CuInS2, CuInSe2, Bi2CdS4, CdIn2Se4, etc.) have been used to develop photoelectrochemical (PEC) solar cells for the sustained and efficient capture of solar energy conversion. Because thin-film solar cell technologies are a capable tactic for global and planetary-photovoltaics and offer a wide variability of picks in terms of device designing and fabrication. Cadmium indium selenide (CdIn2Se4) has obtained very little consideration as a potential material for photoelectrochemical cells. The manufacturing of thin-film-based heterojunction solar cells done by using some chemical and physical techniques such as sputtering, pulsed laser deposition, and evaporation. In spray pyrolysis technique (Fig. 1), a desired equimolar aqueous solution of cadmium chloride, indium trichloride, and selenourea in appropriate volumes can be taken onto preheated substrates (amorphous or conducting substrates viz. ITO, FTO, quartz, etc.). The preparative parameters (substrate temperature, solution concentration, quantity of solution) should be optimized by a PEC method in order to get high-quality stoichiometric films. The optimization of preparative parameters of the photoactive semiconducting electrode by the photoelectrochemical method is a new, reliable, and unique technique in the field of thin-film technology. So, this chapter deals with the preparation of cadmium indium chalcogenide thin films from aqueous medium by cost-effective and simple spray pyrolysis and consequently use of these films in heterojunction solar cell applications. It also extensively describes the physiochemical properties of CdIn2Se4 thin film as a potential window layer to the photoelectrochemical solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The University of Colorado Boulder, http://lsa.colorado.edu/essence/texts/solar.html. Accessed on 19 Dec 2019.

  2. Nalwa, H. S. (2001). Handbook of thin films (1st ed., pp. 1–102). Cambridge: Academic Press, Elsevier.

    Google Scholar 

  3. Nikale, V. M., & Bhosale, C. H. (2004). Properties of spray-deposited CdIn2Se4 thin films for photovoltaic applications. Solar Energy Materials and Solar Cells, 82, 3.

    Google Scholar 

  4. Green, M. A. (1992). Solar cells: operating principles, technology, and system applications (2nd ed., pp. 1–274). Kensington/Sydney: University of New South Wales.

    Google Scholar 

  5. Chopra, K. L., Paulson, P. D., & Dutta, V. (2004). Thin‐film solar cells: an overview, Progress in Photovoltaics: Research and Applications, 12, 69.

    CAS  Google Scholar 

  6. Hassanien, A. S., & Sharma, I. (2020). Optical properties of quaternary a-Ge15-x SbxSe50Te35 thermally evaporated thin-films: refractive index dispersion and single oscillator parameters. Optik, 200, 163415.

    Google Scholar 

  7. Hassanien, A. S., & Sharma, I. (2019). Band-gap engineering, conduction and valence band positions of thermally evaporated amorphous Ge15-xSbxSe50Te35 thin films: Influences of Sb upon some optical characterizations and physical parameters. Journal of Alloys and Compounds, 798, 750.

    CAS  Google Scholar 

  8. Hassanien, A. S., & Akl, A. A. (2018). Influence of thermal and compositional variations on conduction mechanisms and localized state density of amorphous Cd50S50-xSex thin films. Journal of Non-Crystalline Solids, 487, 28.

    CAS  Google Scholar 

  9. Hassanien, A. S., & Akl, A. A. (2018). Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Applied Physics A, 124, 752.

    CAS  Google Scholar 

  10. Ushasree, P. M., & Bora, B. (2019). Solar energy capture materials (p. 1) (E. A. Gibson, Ed.). Cambridge: Royal Society of Chemistry.

    Google Scholar 

  11. Green, M. A., Hishikawa, Y., Dunlop, E. D., Levi, D. H., Hohl-Ebinger, J., & Ho-Baillie, A. W. Y. (2018). Solar cell efficiency tables (version 52). Progress in Photovoltaics: Research and Applications, 26, 427.

    Google Scholar 

  12. Ahn, J.-H., Cai, G., Mane, R. S., Todkar, V. V., Shaikh, A. V., Chung, H., et al. (2007). Electrochemically deposited photoactive CdIn2Se4 thin films: Structural and optical studies. Applied Surface Science, 253, 8588.

    CAS  Google Scholar 

  13. Dalchiele, E. A., Cattarin, S., & Musiani, M. M. (1998). Preparation of CdIn2Se4 thin films by electrodeposition. Journal of Applied Electrochemistry, 28, 1005.

    CAS  Google Scholar 

  14. Salem, A. M., Soliman, W. Z., & Mady, Kh A. (2008). Structural characterization and electrical properties of quaternary CdGaInSe4 thin films. Physica B, 403, 145.

    CAS  Google Scholar 

  15. Chander, S., & Dhaka, M. S. (2017). Optimization of substrates and physical properties of CdS thin films for perovskite solar cell applications. Journal of Materials Science: Materials in Electronics, 28, 6852.

    CAS  Google Scholar 

  16. Purohit, A., Chander, S., Nehra, S. P., & Dhaka, M. S. (2015). Thickness-dependent physical properties of thermally evaporated nanocrystalline CdSe thin films. Acta Metallurgica Sinica (English Letters), 28, 1299.

    CAS  Google Scholar 

  17. Chander, S., & Dhaka, M. S. (2016). Thermal evolution of physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cells. Journal of Materials Science: Materials in Electronics, 27, 11961.

    CAS  Google Scholar 

  18. Chander, S., & Dhaka, M. S. (2015). Preparation and physical characterization of CdTe thin films deposited by vacuum evaporation for photovoltaic applications. Advanced Materials Letters, 6, 907.

    CAS  Google Scholar 

  19. Chander, S., & Dhaka, M. S. (2017). Thermal annealing induced physical properties of electron beam vacuum evaporated CdZnTe thin films. Thin Solid Films, 625, 131.

    CAS  Google Scholar 

  20. Chander, S., & Dhaka, M. S. (2016). Effect of thickness on physical properties of electron beam vacuum evaporated CdZnTe thin films for tandem solar cells. Physica E: Low-dimensional Systems and Nanostructures, 84, 112.

    CAS  Google Scholar 

  21. El-Nahass, M. M. (1991). Optical properties of Cdln2Se4 thin films. Applied Physics A, 52, 353.

    Google Scholar 

  22. Khusayfan, N. M. (2012). Optical properties of CdIn2Se4 thin films in the region of the fundamental absorption edge. Australian Journal of Basic and Applied Sciences, 6, 329.

    CAS  Google Scholar 

  23. Hahn, H., Frank, G., Klinger, W., Storger, A. D., & Storger, G. (1955). Untersuchungen über ternäre Chalkogenide. VI. Über Ternäre Chalkogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber. Zeitschrift für Anorganische und Allgemeine Chemie, 279, 241.

    CAS  Google Scholar 

  24. Nitsche, R. (1960). The growth of single crystals of binary and ternary chalcogenides by chemical transport reactions. Journal of Physics and Chemistry of Solids, 17, 163.

    CAS  Google Scholar 

  25. Rajpure, K. Y., Lokhande, C. D., & Bhosale, C. H. (1997). A comparative study of concentration effect of complexing agent on the properties of spray deposited Sb2S3 thin films and precipitated powders. Materials Chemistry and Physics, 51, 252.

    CAS  Google Scholar 

  26. Rajpure, K. Y., Mathe, V. L., & Bhosale, C. H. (1999). Photoelectrochemical investigation on spray depositedn-CdIn2S4 thin films. Bulletin of Material Science, 22, 927.

    Google Scholar 

  27. Nikale, V. M., Shinde, S. S., Bhosale, C. H., & Rajpure, K. Y. (2011). Structural, morphological and electrical properties of spray deposited CdIn2Se4 thin films. Journal of Alloys and Compounds, 509, 3116.

    CAS  Google Scholar 

  28. Nikale, V. M., Gaikwad, N. S., Rajpure, K. Y., & Bhosale, C. H. (2003). Structural and optical properties of spray-deposited CdIn2Se4 thin films. Materials Chemistry and Physics, 78, 363.

    CAS  Google Scholar 

  29. Adpakpang, K., Sarakonsri, T., Isoda, S., Shinoda, Y., & Thanachayanont, C. (2010). Synthesis of CdIn2Se4 compound used as thermoelectric materials via the solution method. Journal of Alloys and Compounds, 500, 259.

    CAS  Google Scholar 

  30. Nikale, V. M., Shinde, S. S., Babar, A. R., Bhosale, C. H., & Rajpure, K. Y. (2011). The n-CdIn2Se4/p-CdTe heterojunction solar cells. Solar Energy, 85, 1336.

    CAS  Google Scholar 

  31. Bhalerao, A. B., Wagh, B. G., Deshmukh, R. N. P. R., Shim, J.-J., & Lokhande, C. D. (2017). (Photo) electrochemical analysis of electrosynthesized fibrous cadmium indium selenide (CdIn2Se4) thin films. Journal of Photochemistry and Photobiology A: Chemistry, 336, 69.

    CAS  Google Scholar 

  32. Tenne, R., Mirovsky, Y., Greenstein, Y., & Cahen, D. (1982). Ternary chalcogenide‐based photoelectrochemical cells: II . The n-CdIn2Se4/aqueous polysulfide system. Journal of the Electrochemical Society, 129, 1506.

    CAS  Google Scholar 

  33. Marinelli, M., de Pascale, T. M., Meloni, F., Mula, G., Serra, M., & Baroni, S. (1989). Theoretical study of cubic versus tetragonal structures of defect zinc-blende semiconductors: CdIn2Se4. Physical Review B, 40, 1725.

    CAS  Google Scholar 

  34. Ruanthon, A.-A., Sarakonsri, T., & Thanachayanont, C. (2009). Preparation of CdIn2Se4n-type semiconductor sed as thermoelectric material by sol-gel method. Functional Materials Letters, 2, 199.

    Google Scholar 

  35. Salim, S. M., Kamal, M., Salem, A. M., & Bahr, T. M. (2012). Characteristic behaviour of thermaly evaporated CdIn2Se4 thin films. Journal of Applied Sciences Research, 8, 2670.

    CAS  Google Scholar 

  36. Sudha, D., Dhanapandian, S., Manoharan, C., & Arunachalam, A. (2016). Structural, morphological and electrical properties of pulsed electrodeposited CdIn2Se4 thin films. Results in Physics, 6, 599.

    Google Scholar 

  37. Nikale, V. M., Shinde, S. S., Babar, A. R., Bhosale, C. H., & Rajpure, K. Y. (2011). Photoelectrochemical performance of sprayed n-CdIn2Se4 photoanodes. Solar Energy, 85, 325.

    CAS  Google Scholar 

  38. Rawat, K., Manisha, C., & Shishodia, P. K. (2016). Investigation of CuInSe2 thin films deposited by laser ablation method. Emerging Materials Research, 5, 259.

    Google Scholar 

  39. Mahalingam, T., Thanikaikarasan, S., Chandramohan, R., Chung, K., Chu, J. P., Velumani, S., et al. (2010). Electrosynthesis and studies on cadmium-indium-selenide thin films. Materials Science and Engineering B, 174, 236.

    CAS  Google Scholar 

  40. Perna, G., Capozzi, V., Minafra, A., Pallara, M., & Ambrico, M. (2003). Effects of the indium doping on structural and optical propertiesof CdSe thin films deposited by laser ablation technique. The European Physical Journal B, 32, 339.

    CAS  Google Scholar 

  41. Hady, D. A., El-Shazly, A. A., Soliman, H. S., & El-Shazly, E. A. (1999). Electrical properties of SnSe2 thin films. Vacuum, 52, 375.

    CAS  Google Scholar 

  42. Nakanishi, H., Eudo, S., & Trie, T. (1973). Optical Absorption in CdIn2S4. Japanese Journal of Applied Physics, 12, 1646.

    CAS  Google Scholar 

  43. Fuentes-Cabrera, M., Dong, J., & Sankey, O. F. (2000). Theoretical study of the structural, electronic and vibrational properties of CdIn2Te4. Thin Solid Films, 373, 19.

    CAS  Google Scholar 

  44. Nakada, T. (2000). Nano-structural investigations on Cd-doping into Cu(In,Ga)Se2 thin films by chemical bath deposition process. Thin Solid Films, 361–362, 346.

    Google Scholar 

  45. Krishna, K. M., Sharon, M., Mishra, M. K., & Marathe, V. R. (1996). Selection of optimal mixing ratios to obtain suitable photoelectrodes from mixed semiconductors using band gap calculations. Electrochimica Acta, 41, 1999.

    CAS  Google Scholar 

  46. Kokate, A. V., Suryavanshi, U. B., & Bhosale, C. H. (2006). Structural, compositional, and optical properties of electrochemically deposited stoichiometric CdSe thin films from non-aqueous bath. Solar Energy, 80, 156.

    CAS  Google Scholar 

  47. Abdel-Aal, A. (2007). The optical parameters and photoconductivity of CdxIn1Se9-x chalcogenide thin films. Physica B, 392, 180.

    CAS  Google Scholar 

  48. Neumann, H., Kissinger, W., Lévy, F., Sobotta, H., & Riede, V. (1989). Electrical and infrared optical properties of CdIn2S4 single crystals grown by chemical transport. Crystal Research and Technology, 24, 1165.

    CAS  Google Scholar 

  49. Guerrero, E., Quintero, M., & Woolley, J. C. (1990). Temperature variation in direct and indirect band gaps of β-CdIn2Se4. Journal of Physics: Condensed Matter, 2, 6119.

    CAS  Google Scholar 

  50. Hady, D. A., El-Shazly, A. A., Soliman, H. S., & El-Shazly, E. A. (1996). The thermoelectric power, the dark electrical resistivity and the grain boundary potential barrier in CdIn2Se4 thin films. Physica A, 226, 324.

    CAS  Google Scholar 

  51. Trykozko, R., & Huffman, D. R. (2009). Reflectance and optical constants of CdIn2Se4 crystals. Journal of Applied Physics, 52, 5283.

    Google Scholar 

  52. Girija, K., Thirumalairajan, S., & Mohan, S. M. (2009). Deposition and characterization of cadmium indium selenide thin films by chemical bath technique. Optoelectronics and Advanced Materials, Rapid Communications, 3, 60.

    Google Scholar 

  53. Degdas, G., & Peksoz, A. (2019). Electrodeposition of In:CdSe precursor thin films in aqueous electrolytes including different selenous acid concentrations as Se source. Materials Science in Semiconductor Processing, 104, 104655.

    CAS  Google Scholar 

  54. Reichman, J., & Russak, M. A. (1981). Photo effects a semiconductor electrolyte interface. In A. J. Nozik (Ed.) ACS Sys (vol. 146, p. 359).

    Google Scholar 

  55. Zhuiykov, S. (2014). Nanostructured semiconductor oxides for the next generation of electronics and functional devices: Properties and applications (pp. 1–49). Cambridge: Woodhead Publishing, Elsevier.

    Google Scholar 

  56. Luque, A., & Hegedus, S. (2011). Handbook of photovoltaic science and engineering (2nd ed.). London: Wiley.

    Google Scholar 

  57. Chander, S. (2016). Dissertation, Mohanlal Sukhadia University Udaipur.

    Google Scholar 

  58. Chander, S., Purohit, A., Sharma, A., Arvind, S. P., Nehra, & Dhaka, M. S. (2015). Impact of temperature on the performance of series and parallel connected mono-crystalline silicon solar cell. Energy Reports, 1, 175.

    Google Scholar 

  59. Preston, J. S. (1950). Constitution and mechanism of the selenium rectifier photocell. Proceedings of the Royal Society, 202, 449.

    CAS  Google Scholar 

  60. Kroemer, H. (1957). Quasi-Electric and Quasi-Magnetic Fields in Non-Uniform Semiconductors. RCA Review, 18, 332.

    Google Scholar 

  61. Kroemer, H. (1957). Theory of a Wide-Gap Emitter for Transistors. Proceedings of the IRE, 45, 1535.

    Google Scholar 

  62. Tauc, J. (1957). Generation of an emf in semiconductors with nonequilibrium current carrier concentrations. Reviews of Modern Physics, 29, 308.

    Google Scholar 

  63. Armstrong, H. L. (1958). On junctions between semiconductors having different energy gaps. Proceedings of the IRE, 46, 1307 (1958).

    Google Scholar 

  64. Chang, P. C., Fan, Z., Chien, C. J., Stichtenoth, D., Ronning, C., & Lu, J. G. (2006). High-performance ZnO nanowire field effect transistors. Applied Physics Letters, 89, 133113.

    Google Scholar 

  65. Thundat, T. (2008). Flexible approach pays off. Nature Nanotechnology, 3, 133.

    CAS  Google Scholar 

  66. Wu, J. J., & Wong, D. K.-P. (2007). Fabrication and Impedance Analysis of n‐ZnO Nanorod/p‐Si Heterojunctions to Investigate Carrier Concentrations in Zn/O Source‐ Ratio‐Tuned ZnO Nanorod Arrays. Advanced Materials, 19, 2015.

    CAS  Google Scholar 

  67. Oku, T., Takeda, A., Nagata, A., Noma, T., Suzuki, A., & Kikuchi, K. (2010). Fabrication and characterization of fullerene-based bulk heterojunction solar cells with porphyrin, cuInS2, diamond and exciton-diffusion blocking layer. Journal of Energies, 3, 671.

    CAS  Google Scholar 

  68. Fan, B., Maniglio, Y., Simeunovic, M., Kuster, S., Geiger, T., Hany, R., et al. (2009). Squaraine planar-heterojunction solar cells. International Journal of Photoenergy, 2009, 1.

    Google Scholar 

  69. Chander, S., Purohit, A., Nehra, A., Nehra, S. P., & Dhaka, M. S. (2015). A study on spectral response and external quantum efficiency of monocrystalline silicon solar cell. International Journal of Renewable Energy Research, 5, 41.

    Google Scholar 

  70. Chander, S., Purohit, A., Sharma, A., Nehra, S. P., Dhaka, M. S. (2015). A study on the photovoltaic parameters of mono-crystalline Silicon solar cell with cell temperature. Energy Reports, 1, 104.

    Google Scholar 

  71. Chander, S., & Dhaka, M. S. (2016). Optimization of structural, optical and electrical properties of CdZnTe thin films with the application of thermal treatment. Materials Letters, 182, 98.

    CAS  Google Scholar 

  72. Chander, S., & Dhaka, M. S. (2016). Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications. Physica E: Low-dimensional Systems and Nanostructures, 80, 62.

    CAS  Google Scholar 

  73. Chander, S., & Dhaka, M. S. (2017). Time evolution to CdCl2 treatment on Cd-based solar cell devices fabricated by vapor evaporation. Solar Energy, 150, 577.

    CAS  Google Scholar 

  74. Chander, S., Purohit, A., Patel, S. L., & Dhaka, M. S. (2017). Effect of substrates on structural, optical, electrical and morphological properties of evaporated polycrystalline CdZnTe thin films. Physica E: Low-dimensional Systems and Nanostructures, 89, 29.

    CAS  Google Scholar 

  75. Chander, S., & Dhaka, M. S. (2017). Enhanced structural, electrical and optical properties of evaporated CdZnTe thin films deposited on different substrates. Materials Letters, 186, 45.

    CAS  Google Scholar 

  76. Chander, S., & Dhaka, M. S. (2018). Enhancement in microstructural and optoelectrical properties of thermally evaporated CdTe films for solar cells. Results in Physics, 8, 1131.

    Google Scholar 

  77. Matsuura, J., Khatri, I., Lin, T.-Y., Sugiyama, M., & Nakada, T. (2019). Impact of heat‐light soaking and heat‐bias soaking on NaF‐treated CIGS thin film solar cells. Progress in Photovoltaics: Research and Applications, 27, 623.

    CAS  Google Scholar 

  78. Chander, S., & Dhaka, M. S. (2019). Exploration of CdMnTe thin film solar cells. Solar Energy, 183, 544.

    CAS  Google Scholar 

  79. Yan, C., Huang, J., Sun, K., Johnston, S., Zhang, Y., Sun, H., et al. (2018). Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nature Energy, 3, 764.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Chander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chander, S. (2020). Advancement in CdIn2Se4/CdTe Based Photoelectrochemical Solar Cells. In: Ikhmayies, S. (eds) Advances in Energy Materials. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-50108-2_2

Download citation

Publish with us

Policies and ethics