Skip to main content

New Era of the Nano-Electronic Devices – One of the Most Adaptive Learning Areas for the Next Period

  • Conference paper
  • First Online:
Internet of Things, Infrastructures and Mobile Applications (IMCL 2019)

Abstract

The Moore’s law rigorously fulfilled and in 2021 the CMOS technology seems to reach its ultimate limit. What’s next? All specialists anticipate that a circuit from 2031 will not keep the same performances offered by the last 2.5 nm CMOS from 2021. Proposals are multiple, alternative nano-devices are well-known, nanoscale technologies open amazing future facilities. Confluence of nano-electronics with organic semiconductors and biomaterials seems to be inherent. The paper intends to reply to this extraordinary challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taur, Y., Buchanan, D.A., Chen, W., Frank, D.J., et al.: CMOS scaling into the nanometer regime. Proc. IEEE 85, 486–504 (1997)

    Article  Google Scholar 

  2. Xie, Q., Lin, X., Wang, Y., Chen, S., Dousti, M.J., Pedram, M.: Performance comparisons between 7 nm FinFET and conventional bulk CMOS standard cell libraries. IEEE Trans. Circuits Syst. II Express Briefs 62, 761–765 (2015)

    Article  Google Scholar 

  3. Basak, R., Maiti, B., Mallik, A.: Analytical model of gate leakage current through bilayer oxide stack in advanced MOSFET. Superlattices Microstruct. 80, 20–31 (2015)

    Article  Google Scholar 

  4. Han, J.W., Oh, J.S., Meyyappan, M.: Cofabrication of vacuum field emission transistor (VFET) and MOSFET. IEEE Trans. Nanotechnol. 13(3), 464–468 (2014)

    Article  Google Scholar 

  5. Vacca, M., Turvani, G., Riente, F., Graziano, M., Demarchi, D., Piccinini, G.: TAMTAMS: an open tool to understand nanoelectronics. In: 12th IEEE International Conference on Nanotechnology (IEEE-NANO), Birmingham, UK, pp. 1–2 (2012)

    Google Scholar 

  6. Kaneko, A., Yagashita, A., Yahashi, K., Kubota, T., et al.: Sidewall transfer process and selective gate sidewall spacer formation technology for sub-15 nm FinFET with elevated source/drain extension. In: 10-th IEEE International Electron Devices Meeting (IEDM 2005), Washington, DC, USA, pp. 844–847, December 2005

    Google Scholar 

  7. Singh, J., Ciavatti, J., et al.: 14-nm FinFET technology for analog and RF applications. IEEE Trans. Electron Devices 65, 31–37 (2018)

    Article  Google Scholar 

  8. Al-Ameri, T., Georgiev, V.P., Adamu-Lema, F., Asenov, A.: Simulation study of vertically stacked lateral Si nanowires transistors for 5-nm CMOS applications. IEEE J. Electron Devices Soc. 5, 466–472 (2017)

    Article  Google Scholar 

  9. Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., et al.: Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010)

    Article  Google Scholar 

  10. Briseno, A.L., Mannsfeld, S.B., Lu, X., Xiong, Y., Jenekhe, S.A., Bao, Z., Xia, Y.: Fabrication of field-effect transistors from hexathiapentacene single-crystal nanowires. Nano Lett. 7, 668–675 (2007)

    Article  Google Scholar 

  11. Thelander, C., Mårtensson, T., Björk, M.T., Ohlsson, B.J., Larsson, M.W., et al.: Single-electron transistors in heterostructure nanowires. Appl. Phys. Lett. 83, 2052 (2003)

    Article  Google Scholar 

  12. Wang, J., Dai, J., Yarlagadda-Langmuir, T., et al.: Carbon nanotube−conducting-polymer composite nanowires. Langmuir 21, 9–12 (2005)

    Article  Google Scholar 

  13. Chin, H.C., Bhattacharyya, A., Arora, V.K.: Extraction of nanoelectronic parameters from quantum conductance in a carbon nanotube. Carbon 76, 451–454 (2014)

    Article  Google Scholar 

  14. Kavitha, P., Musala, S., Vardhan, K.V., Vani, Y.S., Srinivasulu, A.: Carbon nano tube field effect transistors based ternary Ex-OR and Ex-NOR gates. J. Curr. Nanosci. 12, 520–526 (2016)

    Article  Google Scholar 

  15. Cao, J., Sun, J.S., Hong, J., Li, H.Y., Chen, H.Z., et al.: Carbon nanotube/CdS core–shell nanowires prepared by a simple room-temperature chemical reduction method. Adv. Mater. 16, 84–87 (2004)

    Article  Google Scholar 

  16. Lai, C.C., Tsai, C.C.: A modified stripe-RGBW TFT-LCD with image-processing engine for mobile phone displays. IEEE Trans. Consum. Electron. 53, 1628–1633 (2007)

    Article  Google Scholar 

  17. Kim, S.J., Lee, J.S.: Flexible organic transistor memory devices. Nano Lett. 10, 2884–2890 (2010)

    Article  Google Scholar 

  18. Ravariu, C., Mihaiescu, D., Istrati, D., Stanca, M.: From pentacene thin film transistor to nanostructured materials synthesis for green organic-TFT. In: IEEE Conference of Semiconductors, Sinaia, Romania, pp. 65–68 (2018)

    Google Scholar 

  19. Ravariu, C., Istrati, D., Mihaiescu, D., Morosan, A., Purcareanu, B., Cristescu, R.: Fe3O4 Nano-Core with PABA external shell applied for p-type Organic Thin Film Transistors, not-yet published, in revision (2019)

    Google Scholar 

  20. Ravariu, C., Manea, E., Babarada, F.: Masks and metallic electrodes compounds for silicon biosensor integration. J. Alloy. Compd. 697, 72–79 (2017). Elsevier

    Article  Google Scholar 

  21. Liu, N., Hu, Y., Zhang, J., Cao, J., Liu, Y., Wang, J.: A label-free, organic transistor-based biosensor by introducing electric bias during DNA immobilization. Org. Electron. 13, 2781–2785 (2012)

    Article  Google Scholar 

  22. Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56, 456–465 (2009)

    Article  Google Scholar 

  23. Han, J.W., Meyyappan, M.: Introducing the vacuum transistor: a device made of nothing. IEEE Spectr. 14, 25–29 (2014)

    Google Scholar 

  24. Ravariu, C.: Gate swing improving for the nothing on insulator transistor in weak tunneling. IEEE Trans. Nanotechnol. 16, 1115–1121 (2017)

    Article  Google Scholar 

  25. Ravariu, C.: Vacuum nano-triode in nothing-on-insulator configuration working in terahertz domain. IEEE J. Electron Devices Soc. 6, 1115–1123 (2018)

    Article  Google Scholar 

  26. Ravariu, C., Manea, E., Babarada, F., Ursutiu, D., Mihaiescu, D., Popescu, A.: Organic compounds integrated on nanostructured materials for biomedical applications. In: Auer, M., Langmann, R., (eds.) Chapter 2 in the book: Smart Industry & Smart Education, vol. 47, pp. 489–497. Springer, Cham (2019)

    Google Scholar 

  27. Tanase, M.: Mixed pNOI CMOS simulations, Thesis of Dissertation, under coordination of C. Ravariu, U.P.B, Faculty of Electronics, Bucharest, Romania (2019)

    Google Scholar 

  28. Atlas manual, pp. 345–475 (2019). https://www.silvaco.com/. Accessed 2019

  29. Ravariu, C.: Compact NOI nano-device simulation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(8), 1841–1844 (2014)

    Article  Google Scholar 

  30. Ravariu, C.: Deeper insights of the conduction mechanisms in a vacuum SOI nanotransistor. IEEE Trans. Electron Devices 63(8), 3278–3283 (2016)

    Article  Google Scholar 

  31. Ravariu, C.: Special features of the nothing on insulator transistor simulated with diamond lateral islands. Rom. Rep. Phys. 70, 4 (2018)

    Google Scholar 

  32. Majidi, R., Saadat, M., Davoudi, S.: Electronic properties of doped porous graphene and biphenylene carbon: a density functional theory study. Rom. Rep. Phys. 69, 509 (2017)

    Google Scholar 

  33. Subramanian, K., Kang, W.P., Davidson, J.L.: A monolithic nanodiamond lateral field emission vacuum transistor. IEEE Electron Device Lett. 29(11), 1259–1261 (2008)

    Article  Google Scholar 

  34. Morosan, A., Mihaiescu, D.E., Istrati, D., Voicu, G., Fudulu, A., Stan, R.: Polar shell magnetic nanostructured systems for heterogeneous nanophase reactions. U.P.B. Sci. Bull. Series B 80, 53–64 (2018)

    Google Scholar 

  35. Ravariu, C., Manea, E., Parvulescu, C., Babarada, F., Popescu, A.: Titanium dioxide nanotubes on silicon wafer designated for GOX enzymes immobilization. Digest J. Nanomaterials Biostructures 6(2), 703–707 (2011)

    Google Scholar 

  36. Kaisti, M.: Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 98, 437–448 (2017)

    Article  Google Scholar 

  37. Ravariu, C.: Learning in bioelectronics. In: Hijon-Neira, R., Lazinica, A. (eds.) Advanced Learning, pp. 381–396. InTech, Austria-Croatia (2009)

    Google Scholar 

  38. Sun, C., Liu, M., Sun, H., Lu, H., Zhao, G.: Immobilization free photoelectrochemical aptasensor for environmental pollutants: design, fabrication and mechanism. Biosens. Bioelectron. 140, 111352 (2019)

    Article  Google Scholar 

  39. Hammami, A., Raouafi, N., Mirsky, V.M.: Electrically controlled Michael addition: addressing of covalent immobilization of biological receptors. Biosens. Bioelectron. 121, 72–79 (2018)

    Article  Google Scholar 

  40. Chen, W.W., Neipel, M., Sorger, P.K.: Classic and contemporary approaches to modeling biochemical reactions. Genes Dev. 24(17), 1861–1875 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant of Ministry of Research and Innovation, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0480, within PNCDI III, project number 4/2017 (TFTNANOEL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Ravariu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ravariu, C., Ursutiu, D., Mihaiescu, D., Morosan, A., Tanase, M., Tsiatsos, T. (2021). New Era of the Nano-Electronic Devices – One of the Most Adaptive Learning Areas for the Next Period. In: Auer, M.E., Tsiatsos, T. (eds) Internet of Things, Infrastructures and Mobile Applications. IMCL 2019. Advances in Intelligent Systems and Computing, vol 1192. Springer, Cham. https://doi.org/10.1007/978-3-030-49932-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49932-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49931-0

  • Online ISBN: 978-3-030-49932-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics