Skip to main content

Follicular Lymphoma: Definition, Epidemiology, Pathobiology – Lymphomagenesis, Morphology, Variants, Immunophenotype, Prognostic Factors, Transformation

  • Chapter
  • First Online:
Follicular Lymphoma and Mantle Cell Lymphoma

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 514 Accesses

Abstract

Follicular lymphoma is the most common, indolent lymphoma in the western world; this chapter discusses the pathobiology that will touch upon the evolutionary history and the role of germinal centers that provide a landscape for B cells to acquire oncogenic mutations leading to malignant transformation. The molecular alterations leading to disease progression, divergent evolutionary pathway, and the role of microenvironment are discussed. The morphological variants and clinical-histologic variants, immunophenotype, prognostic factors, and differential diagnosis are discussed. In summary, the chapter will trace the diagnostic evolution of this entity in the past five decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ottensmeier CH, Thompsett AR, Zhu D, Wilkins BS, Sweetenham JW, Stevenson FK. Analysis of VH genes in follicular and diffuse lymphoma shows ongoing somatic mutation and multiple isotype transcripts in early disease with changes during disease progression. Blood. 1998;91(11):4292–9.

    CAS  PubMed  Google Scholar 

  3. Cleary ML, Meeker TC, Levy S, Lee E, Trela M, Sklar J, Levy R. Clustering of extensive somatic mutations in the variable region of an immunoglobulin heavy chain gene from a human B cell lymphoma. Cell. 1986;44(1):97–106.

    CAS  PubMed  Google Scholar 

  4. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;66(6):443–59.

    PubMed  Google Scholar 

  5. Clarke CA, Glaser SL, Gomez SL, Wang SS, Keegan TH, Yang J, Chang ET. Lymphoid malignancies in U.S. Asians: incidence rate differences by birthplace and acculturation. Cancer Epidemiol Biomarkers Prev. 2011;20(6):1064–77.

    PubMed  PubMed Central  Google Scholar 

  6. Agrawal R, Wang J. Pediatric follicular lymphoma: a rare clinicopathologic entity. Arch Pathol Lab Med. 2009;133(1):142–6.

    PubMed  Google Scholar 

  7. Linet MS, Vajdic CM, Morton LM, de Roos AJ, Skibola CF, Boffetta P, Cerhan JR, Flowers CR, de Sanjose S, Monnereau A, et al. Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014(48):26–40.

    PubMed  PubMed Central  Google Scholar 

  8. Wang SS, Carrington M, Berndt SI, Slager SL, Bracci PM, Voutsinas J, Cerhan JR, Smedby KE, Hjalgrim H, Vijai J, et al. HLA class I and II diversity contributes to the etiologic heterogeneity of non-Hodgkin lymphoma subtypes. Cancer Res. 2018;78(14):4086–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Skibola CF, Slager SL, Berndt SI, Lightfoot T, Sampson JN, Morton LM, Weisenburger DD. Medical history, lifestyle, family history, and occupational risk factors for adult acute lymphocytic leukemia: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014(48):125–9.

    PubMed  PubMed Central  Google Scholar 

  10. Carbone A, Roulland S, Gloghini A, Younes A, von Keudell G, Lopez-Guillermo A, Fitzgibbon J. Follicular lymphoma. Nat Rev Dis Primers. 2019;5(1):83.

    PubMed  Google Scholar 

  11. Agopian J, Navarro JM, Gac AC, Lecluse Y, Briand M, Grenot P, Gauduchon P, Ruminy P, Lebailly P, Nadel B, et al. Agricultural pesticide exposure and the molecular connection to lymphomagenesis. J Exp Med. 2009;206(7):1473–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiu BC, Dave BJ, Blair A, Gapstur SM, Zahm SH, Weisenburger DD. Agricultural pesticide use and risk of t(14;18)-defined subtypes of non-Hodgkin lymphoma. Blood. 2006;108(4):1363–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Basten A, Brink R, Peake P, Adams E, Crosbie J, Hartley S, Goodnow CC. Self tolerance in the B-cell repertoire. Immunol Rev. 1991;122:5–19.

    CAS  PubMed  Google Scholar 

  14. Nemazee D, Russell D, Arnold B, Haemmerling G, Allison J, Miller JF, Morahan G, Buerki K. Clonal deletion of autospecific B lymphocytes. Immunol Rev. 1991;122:117–32.

    CAS  PubMed  Google Scholar 

  15. Bachmann MF, Rohrer UH, Kundig TM, Burki K, Hengartner H, Zinkernagel RM. The influence of antigen organization on B cell responsiveness. Science. 1993;262(5138):1448–51.

    CAS  PubMed  Google Scholar 

  16. Reth M, Hombach J, Wienands J, Campbell KS, Chien N, Justement LB, Cambier JC. The B-cell antigen receptor complex. Immunol Today. 1991;12(6):196–201.

    CAS  PubMed  Google Scholar 

  17. Brack C, Hirama M, Lenhard-Schuller R, Tonegawa S. A complete immunoglobulin gene is created by somatic recombination. Cell. 1978;15(1):1–14.

    CAS  PubMed  Google Scholar 

  18. Camacho FI, Algara P, Rodriguez A, Ruiz-Ballesteros E, Mollejo M, Martinez N, Martinez-Climent JA, Gonzalez M, Mateo M, Caleo A, et al. Molecular heterogeneity in MCL defined by the use of specific VH genes and the frequency of somatic mutations. Blood. 2003;101(10):4042–6.

    CAS  PubMed  Google Scholar 

  19. Alt FW, Yancopoulos GD, Blackwell TK, Wood C, Thomas E, Boss M, Coffman R, Rosenberg N, Tonegawa S, Baltimore D. Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J. 1984;3(6):1209–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kelsoe G. B cell diversification and differentiation in the periphery. J Exp Med. 1994;180(1):5–6.

    CAS  PubMed  Google Scholar 

  21. MacLennan IC. Germinal centers. Annu Rev Immunol. 1994;12:117–39.

    CAS  PubMed  Google Scholar 

  22. de Vinuesa CG, Cook MC, Ball J, Drew M, Sunners Y, Cascalho M, Wabl M, Klaus GG, MacLennan IC. Germinal centers without T cells. J Exp Med. 2000;191(3):485–94.

    PubMed  PubMed Central  Google Scholar 

  23. Monson NL, Foster SJ, Brezinschek HP, Brezinschek RI, Dorner T, Lipsky PE. The role of CD40-CD40 ligand (CD154) interactions in immunoglobulin light chain repertoire generation and somatic mutation. Clin Immunol. 2001;100(1):71–81.

    CAS  PubMed  Google Scholar 

  24. Weller S, Faili A, Garcia C, Braun MC, Le Deist FF, de Saint Basile GG, Hermine O, Fischer A, Reynaud CA, Weill JC. CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc Natl Acad Sci U S A. 2001;98(3):1166–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Toellner KM, Jenkinson WE, Taylor DR, Khan M, Sze DM, Sansom DM, Vinuesa CG, MacLennan IC. Low-level hypermutation in T cell-independent germinal centers compared with high mutation rates associated with T cell-dependent germinal centers. J Exp Med. 2002;195(3):383–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. William J, Euler C, Christensen S, Shlomchik MJ. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science. 2002;297(5589):2066–70.

    CAS  PubMed  Google Scholar 

  27. Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005;352(8):804–15.

    CAS  PubMed  Google Scholar 

  28. Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381(6585):751–8.

    CAS  PubMed  Google Scholar 

  29. Meffre E, Casellas R, Nussenzweig MC. Antibody regulation of B cell development. Nat Immunol. 2000;1(5):379–85.

    CAS  PubMed  Google Scholar 

  30. Maul RW, Gearhart PJ. AID and somatic hypermutation. Adv Immunol. 2010;105:159–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Teng G, Papavasiliou FN. Immunoglobulin somatic hypermutation. Annu Rev Genet. 2007;41:107–20.

    CAS  PubMed  Google Scholar 

  32. Di Noia JM, Neuberger MS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem. 2007;76:1–22.

    PubMed  Google Scholar 

  33. Zeng X, Winter DB, Kasmer C, Kraemer KH, Lehmann AR, Gearhart PJ. DNA polymerase eta is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nat Immunol. 2001;2(6):537–41.

    CAS  PubMed  Google Scholar 

  34. Bebenek K, Tissier A, Frank EG, McDonald JP, Prasad R, Wilson SH, Woodgate R, Kunkel TA. 5′-Deoxyribose phosphate lyase activity of human DNA polymerase iota in vitro. Science. 2001;291(5511):2156–9.

    CAS  PubMed  Google Scholar 

  35. Stavnezer J, Guikema JE, Schrader CE. Mechanism and regulation of class switch recombination. Annu Rev Immunol. 2008;26:261–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Methot SP, Di Noia JM. Molecular mechanisms of somatic hypermutation and class switch recombination. Adv Immunol. 2017;133:37–87.

    CAS  PubMed  Google Scholar 

  37. Steele EJ, Franklin A, Blanden RV. Genesis of the strand-biased signature in somatic hypermutation of rearranged immunoglobulin variable genes. Immunol Cell Biol. 2004;82(2):209–18.

    CAS  PubMed  Google Scholar 

  38. Mayorov VI, Rogozin IB, Adkison LR, Gearhart PJ. DNA polymerase eta contributes to strand bias of mutations of A versus T in immunoglobulin genes. J Immunol. 2005;174(12):7781–6.

    CAS  PubMed  Google Scholar 

  39. Tippin B, Pham P, Goodman MF. Error-prone replication for better or worse. Trends Microbiol. 2004;12(6):288–95.

    CAS  PubMed  Google Scholar 

  40. Pavlov YI, Rogozin IB, Galkin AP, Aksenova AY, Hanaoka F, Rada C, Kunkel TA. Correlation of somatic hypermutation specificity and A-T base pair substitution errors by DNA polymerase eta during copying of a mouse immunoglobulin kappa light chain transgene. Proc Natl Acad Sci U S A. 2002;99(15):9954–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang B, Casali P. The CDR1 sequences of a major proportion of human germline Ig VH genes are inherently susceptible to amino acid replacement. Immunol Today. 1994;15(8):367–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jukes TH, King JL. Evolutionary nucleotide replacements in DNA. Nature. 1979;281(5732):605–6.

    CAS  PubMed  Google Scholar 

  43. Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol. 2006;6(2):107–16.

    CAS  PubMed  Google Scholar 

  44. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88.

    CAS  PubMed  Google Scholar 

  45. Mackarehtschian K, Hardin JD, Moore KA, Boast S, Goff SP, Lemischka IR. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity. 1995;3(1):147–61.

    CAS  PubMed  Google Scholar 

  46. Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S, Akashi K, Korsmeyer SJ. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science. 2005;307(5712):1101–4.

    CAS  PubMed  Google Scholar 

  47. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Koopman G, Parmentier HK, Schuurman HJ, Newman W, Meijer CJ, Pals ST. Adhesion of human B cells to follicular dendritic cells involves both the lymphocyte function-associated antigen 1/intercellular adhesion molecule 1 and very late antigen 4/vascular cell adhesion molecule 1 pathways. J Exp Med. 1991;173(6):1297–304.

    CAS  PubMed  Google Scholar 

  49. Koopman G, Keehnen RM, Lindhout E, Newman W, Shimizu Y, van Seventer GA, de Groot C, Pals ST. Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J Immunol. 1994;152(8):3760–7.

    CAS  PubMed  Google Scholar 

  50. Wykes M, Poudrier J, Lindstedt R, Gray D. Regulation of cytoplasmic, surface and soluble forms of CD40 ligand in mouse B cells. Eur J Immunol. 1998;28(2):548–59.

    CAS  PubMed  Google Scholar 

  51. Wykes M. Why do B cells produce CD40 ligand? Immunol Cell Biol. 2003;81(4):328–31.

    CAS  PubMed  Google Scholar 

  52. Armitage RJ, Fanslow WC, Strockbine L, Sato TA, Clifford KN, Macduff BM, Anderson DM, Gimpel SD, Davis-Smith T, Maliszewski CR, et al. Molecular and biological characterization of a murine ligand for CD40. Nature. 1992;357(6373):80–2.

    CAS  PubMed  Google Scholar 

  53. Fuleihan R, Ramesh N, Geha RS. Role of CD40-CD40-ligand interaction in Ig-isotype switching. Curr Opin Immunol. 1993;5(6):963–7.

    CAS  PubMed  Google Scholar 

  54. Grabstein KH, Maliszewski CR, Shanebeck K, Sato TA, Spriggs MK, Fanslow WC, Armitage RJ. The regulation of T cell-dependent antibody formation in vitro by CD40 ligand and IL-2. J Immunol. 1993;150(8 Pt 1):3141–7.

    CAS  PubMed  Google Scholar 

  55. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229(1):152–72.

    CAS  PubMed  Google Scholar 

  56. Cyster JG, Ansel KM, Reif K, Ekland EH, Hyman PL, Tang HL, Luther SA, Ngo VN. Follicular stromal cells and lymphocyte homing to follicles. Immunol Rev. 2000;176:181–93.

    CAS  PubMed  Google Scholar 

  57. Harwood NE, Batista FD. New insights into the early molecular events underlying B cell activation. Immunity. 2008;28(5):609–19.

    CAS  PubMed  Google Scholar 

  58. LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008;112(5):1570–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gatto D, Brink R. The germinal center reaction. J Allergy Clin Immunol. 2010;126(5):898–907; quiz 908-899.

    CAS  PubMed  Google Scholar 

  60. MacLennan IC. Germinal centers still hold secrets. Immunity. 2005;22(6):656–7.

    CAS  PubMed  Google Scholar 

  61. Schmidlin H, Diehl SA, Blom B. New insights into the regulation of human B-cell differentiation. Trends Immunol. 2009;30(6):277–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gold MR, Matsuuchi L, Kelly RB, DeFranco AL. Tyrosine phosphorylation of components of the B-cell antigen receptors following receptor crosslinking. Proc Natl Acad Sci U S A. 1991;88(8):3436–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Rolli V, Gallwitz M, Wossning T, Flemming A, Schamel WW, Zurn C, Reth M. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell. 2002;10(5):1057–69.

    CAS  PubMed  Google Scholar 

  64. Fruman DA, Satterthwaite AB, Witte ON. Xid-like phenotypes: a B cell signalosome takes shape. Immunity. 2000;13(1):1–3.

    CAS  PubMed  Google Scholar 

  65. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91(2):231–41.

    CAS  PubMed  Google Scholar 

  66. Weng WK, Jarvis L, LeBien TW. Signaling through CD19 activates Vav/mitogen-activated protein kinase pathway and induces formation of a CD19/Vav/phosphatidylinositol 3-kinase complex in human B cell precursors. J Biol Chem. 1994;269(51):32514–21.

    CAS  PubMed  Google Scholar 

  67. Hashimoto A, Okada H, Jiang A, Kurosaki M, Greenberg S, Clark EA, Kurosaki T. Involvement of guanosine triphosphatases and phospholipase C-gamma2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B cell antigen receptor. J Exp Med. 1998;188(7):1287–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Barkett M, Gilmore TD. Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene. 1999;18(49):6910–24.

    CAS  PubMed  Google Scholar 

  69. Aarts WM, Bende RJ, Steenbergen EJ, Kluin PM, Ooms EC, Pals ST, van Noesel CJ. Variable heavy chain gene analysis of follicular lymphomas: correlation between heavy chain isotype expression and somatic mutation load. Blood. 2000;95(9):2922–9.

    CAS  PubMed  Google Scholar 

  70. Smit LA, Bende RJ, Aten J, Guikema JE, Aarts WM, van Noesel CJ. Expression of activation-induced cytidine deaminase is confined to B-cell non-Hodgkin’s lymphomas of germinal-center phenotype. Cancer Res. 2003;63(14):3894–8.

    CAS  PubMed  Google Scholar 

  71. Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell. 1986;47(1):19–28.

    CAS  PubMed  Google Scholar 

  72. Bakhshi A, Wright JJ, Graninger W, Seto M, Owens J, Cossman J, Jensen JP, Goldman P, Korsmeyer SJ. Mechanism of the t(14;18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci U S A. 1987;84(8):2396–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Weinberg OK, Ai WZ, Mariappan MR, Shum C, Levy R, Arber DA. “Minor” BCL2 breakpoints in follicular lymphoma: frequency and correlation with grade and disease presentation in 236 cases. J Mol Diagn. 2007;9(4):530–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cleary ML, Galili N, Sklar J. Detection of a second t(14;18) breakpoint cluster region in human follicular lymphomas. J Exp Med. 1986;164(1):315–20.

    CAS  PubMed  Google Scholar 

  75. Albinger-Hegyi A, Hochreutener B, Abdou MT, Hegyi I, Dours-Zimmermann MT, Kurrer MO, Heitz PU, Zimmermann DR. High frequency of t(14;18)-translocation breakpoints outside of major breakpoint and minor cluster regions in follicular lymphomas: improved polymerase chain reaction protocols for their detection. Am J Pathol. 2002;160(3):823–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ngan BY, Nourse J, Cleary ML. Detection of chromosomal translocation t(14;18) within the minor cluster region of bcl-2 by polymerase chain reaction and direct genomic sequencing of the enzymatically amplified DNA in follicular lymphomas. Blood. 1989;73(7):1759–62.

    CAS  PubMed  Google Scholar 

  77. McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP, Korsmeyer SJ. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell. 1989;57(1):79–88.

    CAS  PubMed  Google Scholar 

  78. Limpens J, Stad R, Vos C, de Vlaam C, de Jong D, van Ommen GJ, Schuuring E, Kluin PM. Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood. 1995;85(9):2528–36.

    CAS  PubMed  Google Scholar 

  79. Roulland S, Lebailly P, Roussel G, Briand M, Cappellen D, Pottier D, Hardouin A, Troussard X, Bastard C, Henry-Amar M, et al. BCL-2/JH translocation in peripheral blood lymphocytes of unexposed individuals: lack of seasonal variations in frequency and molecular features. Int J Cancer. 2003;104(6):695–8.

    CAS  PubMed  Google Scholar 

  80. Roulland S, Navarro JM, Grenot P, Milili M, Agopian J, Montpellier B, Gauduchon P, Lebailly P, Schiff C, Nadel B. Follicular lymphoma-like B cells in healthy individuals: a novel intermediate step in early lymphomagenesis. J Exp Med. 2006;203(11):2425–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Huet S, Sujobert P, Salles G. From genetics to the clinic: a translational perspective on follicular lymphoma. Nat Rev Cancer. 2018;18(4):224–39.

    CAS  PubMed  Google Scholar 

  82. Kishimoto W, Nishikori M. Molecular pathogenesis of follicular lymphoma. J Clin Exp Hematop. 2014;54(1):23–30.

    PubMed  Google Scholar 

  83. Vaandrager JW, Schuuring E, Kluin-Nelemans HC, Dyer MJ, Raap AK, Kluin PM. DNA fiber fluorescence in situ hybridization analysis of immunoglobulin class switching in B-cell neoplasia: aberrant CH gene rearrangements in follicle center-cell lymphoma. Blood. 1998;92(8):2871–8.

    CAS  PubMed  Google Scholar 

  84. Akasaka T, Akasaka H, Yonetani N, Ohno H, Yamabe H, Fukuhara S, Okuma M. Refinement of the BCL2/immunoglobulin heavy chain fusion gene in t(14;18)(q32;q21) by polymerase chain reaction amplification for long targets. Genes Chromosomes Cancer. 1998;21(1):17–29.

    CAS  PubMed  Google Scholar 

  85. Sungalee S, Mamessier E, Morgado E, Gregoire E, Brohawn PZ, Morehouse CA, Jouve N, Monvoisin C, Menard C, Debroas G, et al. Germinal center reentries of BCL2-overexpressing B cells drive follicular lymphoma progression. J Clin Invest. 2014;124(12):5337–51.

    PubMed  PubMed Central  Google Scholar 

  86. Ramiro AR, Jankovic M, Eisenreich T, Difilippantonio S, Chen-Kiang S, Muramatsu M, Honjo T, Nussenzweig A, Nussenzweig MC. AID is required for c-myc/IgH chromosome translocations in vivo. Cell. 2004;118(4):431–8.

    CAS  PubMed  Google Scholar 

  87. Mlynarczyk C, Fontan L, Melnick A. Germinal center-derived lymphomas: the darkest side of humoral immunity. Immunol Rev. 2019;288(1):214–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pandey S, Mourcin F, Marchand T, Nayar S, Guirriec M, Pangault C, Monvoisin C, Ame-Thomas P, Guilloton F, Dulong J, et al. IL-4/CXCL12 loop is a key regulator of lymphoid stroma function in follicular lymphoma. Blood. 2017;129(18):2507–18.

    CAS  PubMed  Google Scholar 

  89. Ame-Thomas P, Tarte K. The yin and the yang of follicular lymphoma cell niches: role of microenvironment heterogeneity and plasticity. Semin Cancer Biol. 2014;24:23–32.

    PubMed  Google Scholar 

  90. Dogan I, Bertocci B, Vilmont V, Delbos F, Megret J, Storck S, Reynaud CA, Weill JC. Multiple layers of B cell memory with different effector functions. Nat Immunol. 2009;10(12):1292–9.

    CAS  PubMed  Google Scholar 

  91. Amin R, Mourcin F, Uhel F, Pangault C, Ruminy P, Dupre L, Guirriec M, Marchand T, Fest T, Lamy T, et al. DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma. Blood. 2015;126(16):1911–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Linley A, Krysov S, Ponzoni M, Johnson PW, Packham G, Stevenson FK. Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells. Blood. 2015;126(16):1902–10.

    CAS  PubMed  Google Scholar 

  93. McCann KJ, Ottensmeier CH, Callard A, Radcliffe CM, Harvey DJ, Dwek RA, Rudd PM, Sutton BJ, Hobby P, Stevenson FK. Remarkable selective glycosylation of the immunoglobulin variable region in follicular lymphoma. Mol Immunol. 2008;45(6):1567–72.

    CAS  PubMed  Google Scholar 

  94. Coelho V, Krysov S, Ghaemmaghami AM, Emara M, Potter KN, Johnson P, Packham G, Martinez-Pomares L, Stevenson FK. Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc Natl Acad Sci U S A. 2010;107(43):18587–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Boice M, Salloum D, Mourcin F, Sanghvi V, Amin R, Oricchio E, Jiang M, Mottok A, Denis-Lagache N, Ciriello G, et al. Loss of the HVEM tumor suppressor in lymphoma and restoration by modified CAR-T cells. Cell. 2016;167(2):405–418.e413.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, Johnson NA, Severson TM, Chiu R, Field M, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476(7360):298–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ennishi D, Takata K, Beguelin W, Duns G, Mottok A, Farinha P, Bashashati A, Saberi S, Boyle M, Meissner B, et al. Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discov. 2019;9(4):546–63.

    PubMed  Google Scholar 

  99. Mondello P, Tadros S, Teater M, Fontan L, Chang AY, Jain N, Yang H, Singh S, Ying HY, Chu CS, et al. Selective inhibition of HDAC3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma. Cancer Discov. 2020;10(3):440–59.

    PubMed  Google Scholar 

  100. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper LH, Lerach S, Tang H, Ma J, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471(7337):189–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Karube K, Enjuanes A, Dlouhy I, Jares P, Martin-Garcia D, Nadeu F, Ordonez GR, Rovira J, Clot G, Royo C, et al. Integrating genomic alterations in diffuse large B-cell lymphoma identifies new relevant pathways and potential therapeutic targets. Leukemia. 2018;32(3):675–84.

    CAS  PubMed  Google Scholar 

  102. Pastore A, Jurinovic V, Kridel R, Hoster E, Staiger AM, Szczepanowski M, Pott C, Kopp N, Murakami M, Horn H, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015;16(9):1111–22.

    CAS  Google Scholar 

  103. Krysiak K, Gomez F, White BS, Matlock M, Miller CA, Trani L, Fronick CC, Fulton RS, Kreisel F, Cashen AF, et al. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood. 2017;129(4):473–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Okosun J, Wolfson RL, Wang J, Araf S, Wilkins L, Castellano BM, Escudero-Ibarz L, Al Seraihi AF, Richter J, Bernhart SH, et al. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma. Nat Genet. 2016;48(2):183–8.

    CAS  PubMed  Google Scholar 

  105. Hoglund M, Sehn L, Connors JM, Gascoyne RD, Siebert R, Sall T, Mitelman F, Horsman DE. Identification of cytogenetic subgroups and karyotypic pathways of clonal evolution in follicular lymphomas. Genes Chromosomes Cancer. 2004;39(3):195–204.

    PubMed  Google Scholar 

  106. Mann RB, Berard CW. Criteria for the cytologic subclassification of follicular lymphomas: a proposed alternative method. Hematol Oncol. 1983;1(2):187–92.

    CAS  PubMed  Google Scholar 

  107. Weigert O, Kopp N, Lane AA, Yoda A, Dahlberg SE, Neuberg D, Bahar AY, Chapuy B, Kutok JL, Longtine JA, et al. Molecular ontogeny of donor-derived follicular lymphomas occurring after hematopoietic cell transplantation. Cancer Discov. 2012;2(1):47–55.

    PubMed  Google Scholar 

  108. Dreyling M, Ghielmini M, Rule S, Salles G, Vitolo U, Ladetto M. Newly diagnosed and relapsed follicular lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(12):3109.

    CAS  PubMed  Google Scholar 

  109. Wang SA, Wang L, Hochberg EP, Muzikansky A, Harris NL, Hasserjian RP. Low histologic grade follicular lymphoma with high proliferation index: morphologic and clinical features. Am J Surg Pathol. 2005;29(11):1490–6.

    PubMed  Google Scholar 

  110. Dogan A, Du MQ, Aiello A, Diss TC, Ye HT, Pan LX, Isaacson PG. Follicular lymphomas contain a clonally linked but phenotypically distinct neoplastic B-cell population in the interfollicular zone. Blood. 1998;91(12):4708–14.

    CAS  PubMed  Google Scholar 

  111. Gradowski JF, Jaffe ES, Warnke RA, Pittaluga S, Surti U, Gole LA, Swerdlow SH. Follicular lymphomas with plasmacytic differentiation include two subtypes. Mod Pathol. 2010;23(1):71–9.

    PubMed  Google Scholar 

  112. Bosga-Bouwer AG, van den Berg A, Haralambieva E, de Jong D, Boonstra R, Kluin P, van den Berg E, Poppema S. Molecular, cytogenetic, and immunophenotypic characterization of follicular lymphoma grade 3B; a separate entity or part of the spectrum of diffuse large B-cell lymphoma or follicular lymphoma? Hum Pathol. 2006;37(5):528–33.

    CAS  PubMed  Google Scholar 

  113. Menter T, Gasser A, Juskevicius D, Dirnhofer S, Tzankov A. Diagnostic utility of the germinal center-associated markers GCET1, HGAL, and LMO2 in hematolymphoid neoplasms. Appl Immunohistochem Mol Morphol. 2015;23(7):491–8.

    CAS  PubMed  Google Scholar 

  114. Li Y, Hu S, Zuo Z, Hong M, Lin P, Li S, Konoplev S, Wang Z, Khoury JD, Young KH, et al. CD5-positive follicular lymphoma: clinicopathologic correlations and outcome in 88 cases. Mod Pathol. 2015;28(6):787–98.

    CAS  PubMed  Google Scholar 

  115. Tiesinga JJ, Wu CD, Inghirami G. CD5+ follicle center lymphoma. Immunophenotyping detects a unique subset of "floral" follicular lymphoma. Am J Clin Pathol. 2000;114(6):912–21.

    CAS  PubMed  Google Scholar 

  116. Karube K, Guo Y, Suzumiya J, Sugita Y, Nomura Y, Yamamoto K, Shimizu K, Yoshida S, Komatani H, Takeshita M, et al. CD10-MUM1+ follicular lymphoma lacks BCL2 gene translocation and shows characteristic biologic and clinical features. Blood. 2007;109(7):3076–9.

    CAS  PubMed  Google Scholar 

  117. Kendrick SL, Redd L, Muranyi A, Henricksen LA, Stanislaw S, Smith LM, Perry AM, Fu K, Weisenburger DD, Rosenwald A, et al. BCL2 antibodies targeted at different epitopes detect varying levels of protein expression and correlate with frequent gene amplification in diffuse large B-cell lymphoma. Hum Pathol. 2014;45(10):2144–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, Garcia-Sanz R, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317.

    PubMed  Google Scholar 

  119. Payne K, Wright P, Grant JW, Huang Y, Hamoudi R, Bacon CM, Du MQ, Liu H. BIOMED-2 PCR assays for IGK gene rearrangements are essential for B-cell clonality analysis in follicular lymphoma. Br J Haematol. 2011;155(1):84–92.

    CAS  PubMed  Google Scholar 

  120. Einerson RR, Kurtin PJ, Dayharsh GA, Kimlinger TK, Remstein ED. FISH is superior to PCR in detecting t(14;18)(q32;q21)-IgH/bcl-2 in follicular lymphoma using paraffin-embedded tissue samples. Am J Clin Pathol. 2005;124(3):421–9.

    CAS  PubMed  Google Scholar 

  121. Nathwani BN, Metter GE, Miller TP, Burke JS, Mann RB, Barcos M, Kjeldsberg CR, Dixon DO, Winberg CD, Whitcomb CC, et al. What should be the morphologic criteria for the subdivision of follicular lymphomas? Blood. 1986;68(4):837–45.

    CAS  PubMed  Google Scholar 

  122. Salaverria I, Siebert R. Follicular lymphoma grade 3B. Best Pract Res Clin Haematol. 2011;24(2):111–9.

    CAS  PubMed  Google Scholar 

  123. Wahlin BE, Yri OE, Kimby E, Holte H, Delabie J, Smeland EB, Sundstrom C, Christensson B, Sander B. Clinical significance of the WHO grades of follicular lymphoma in a population-based cohort of 505 patients with long follow-up times. Br J Haematol. 2012;156(2):225–33.

    PubMed  Google Scholar 

  124. Shustik J, Quinn M, Connors JM, Gascoyne RD, Skinnider B, Sehn LH. Follicular non-Hodgkin lymphoma grades 3A and 3B have a similar outcome and appear incurable with anthracycline-based therapy. Ann Oncol. 2011;22(5):1164–9.

    CAS  PubMed  Google Scholar 

  125. Adam P, Katzenberger T, Eifert M, Ott MM, Rosenwald A, Muller-Hermelink HK, Ott G. Presence of preserved reactive germinal centers in follicular lymphoma is a strong histopathologic indicator of limited disease stage. Am J Surg Pathol. 2005;29(12):1661–4.

    PubMed  Google Scholar 

  126. Katzenberger T, Kalla J, Leich E, Stocklein H, Hartmann E, Barnickel S, Wessendorf S, Ott MM, Muller-Hermelink HK, Rosenwald A, et al. A distinctive subtype of t(14;18)-negative nodal follicular non-Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood. 2009;113(5):1053–61.

    CAS  PubMed  Google Scholar 

  127. Wang E, West D, Kulbacki E. An unusual nodal marginal zone lymphoma with bright CD10 expression: a potential diagnostic pitfall. Am J Hematol. 2010;85(7):546–8.

    PubMed  Google Scholar 

  128. Goodlad JR, Batstone PJ, Hamilton D, Hollowood K. Follicular lymphoma with marginal zone differentiation: cytogenetic findings in support of a high-risk variant of follicular lymphoma. Histopathology. 2003;42(3):292–8.

    CAS  PubMed  Google Scholar 

  129. Nathwani BN, Anderson JR, Armitage JO, Cavalli F, Diebold J, Drachenberg MR, Harris NL, MacLennan KA, Muller-Hermelink HK, Ullrich FA, et al. Clinical significance of follicular lymphoma with monocytoid B cells. Non-Hodgkin’s lymphoma classification project. Hum Pathol. 1999;30(3):263–8.

    CAS  PubMed  Google Scholar 

  130. Dogan A, Bagdi E, Munson P, Isaacson PG. CD10 and BCL-6 expression in paraffin sections of normal lymphoid tissue and B-cell lymphomas. Am J Surg Pathol. 2000;24(6):846–52.

    CAS  PubMed  Google Scholar 

  131. Marafioti T, Copie-Bergman C, Calaminici M, Paterson JC, Shende VH, Liu H, Baia M, Ramsay AD, Agostinelli C, Briere J, et al. Another look at follicular lymphoma: immunophenotypic and molecular analyses identify distinct follicular lymphoma subgroups. Histopathology. 2013;62(6):860–75.

    PubMed  Google Scholar 

  132. Pileri SA, Sabattini E, Rosito P, Zinzani PL, Ascani S, Fraternali-Orcioni G, Gamberi B, Piccioli M, Vivenza D, Falini B, et al. Primary follicular lymphoma of the testis in childhood: an entity with peculiar clinical and molecular characteristics. J Clin Pathol. 2002;55(9):684–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Finn LS, Viswanatha DS, Belasco JB, Snyder H, Huebner D, Sorbara L, Raffeld M, Jaffe ES, Salhany KE. Primary follicular lymphoma of the testis in childhood. Cancer. 1999;85(7):1626–35.

    CAS  PubMed  Google Scholar 

  134. Lones MA, Raphael M, McCarthy K, Wotherspoon A, Terrier-Lacombe MJ, Ramsay AD, Maclennan K, Cairo MS, Gerrard M, Michon J, et al. Primary follicular lymphoma of the testis in children and adolescents. J Pediatr Hematol Oncol. 2012;34(1):68–71.

    PubMed  PubMed Central  Google Scholar 

  135. Tsuboi K, Iida S, Inagaki H, Kato M, Hayami Y, Hanamura I, Miura K, Harada S, Kikuchi M, Komatsu H, et al. MUM1/IRF4 expression as a frequent event in mature lymphoid malignancies. Leukemia. 2000;14(3):449–56.

    CAS  PubMed  Google Scholar 

  136. Falini B, Fizzotti M, Pucciarini A, Bigerna B, Marafioti T, Gambacorta M, Pacini R, Alunni C, Natali-Tanci L, Ugolini B, et al. A monoclonal antibody (MUM1p) detects expression of the MUM1/IRF4 protein in a subset of germinal center B cells, plasma cells, and activated T cells. Blood. 2000;95(6):2084–92.

    CAS  PubMed  Google Scholar 

  137. Karube K, Ying G, Tagawa H, Niino D, Aoki R, Kimura Y, Hashikawa K, Suefuji N, Sugita Y, Nomura Y, et al. BCL6 gene amplification/3q27 gain is associated with unique clinicopathological characteristics among follicular lymphoma without BCL2 gene translocation. Mod Pathol. 2008;21(8):973–8.

    CAS  PubMed  Google Scholar 

  138. Bermudez G, Gonzalez de Villambrosia S, Martinez-Lopez A, Batlle A, Revert-Arce JB, Cereceda Company L, Ortega Bezanilla C, Piris MA, Montes-Moreno S. Incidental and isolated follicular lymphoma in situ and mantle cell lymphoma in situ lack clinical significance. Am J Surg Pathol. 2016;40(7):943–9.

    PubMed  Google Scholar 

  139. Mamessier E, Broussais-Guillaumot F, Chetaille B, Bouabdallah R, Xerri L, Jaffe ES, Nadel B. Nature and importance of follicular lymphoma precursors. Haematologica. 2014;99(5):802–10.

    PubMed  PubMed Central  Google Scholar 

  140. Cheung MC, Bailey D, Pennell N, Imrie KR, Berinstein NL, Amato D, Ghorab Z. In situ localization of follicular lymphoma: evidence for subclinical systemic disease with detection of an identical BCL-2/IGH fusion gene in blood and lymph node. Leukemia. 2009;23(6):1176–9.

    CAS  PubMed  Google Scholar 

  141. Takata K, Okada H, Ohmiya N, Nakamura S, Kitadai Y, Tari A, Akamatsu T, Kawai H, Tanaka S, Araki H, et al. Primary gastrointestinal follicular lymphoma involving the duodenal second portion is a distinct entity: a multicenter, retrospective analysis in Japan. Cancer Sci. 2011;102(8):1532–6.

    CAS  PubMed  Google Scholar 

  142. Takata K, Sato Y, Nakamura N, Tokunaka M, Miki Y, Yukie Kikuti Y, Igarashi K, Ito E, Harigae H, Kato S, et al. Duodenal follicular lymphoma lacks AID but expresses BACH2 and has memory B-cell characteristics. Mod Pathol. 2013;26(1):22–31.

    CAS  PubMed  Google Scholar 

  143. Bende RJ, Smit LA, Bossenbroek JG, Aarts WM, Spaargaren M, de Leval L, Boeckxstaens GE, Pals ST, van Noesel CJ. Primary follicular lymphoma of the small intestine: alpha4beta7 expression and immunoglobulin configuration suggest an origin from local antigen-experienced B cells. Am J Pathol. 2003;162(1):105–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Schmatz AI, Streubel B, Kretschmer-Chott E, Puspok A, Jager U, Mannhalter C, Tiemann M, Ott G, Fischbach W, Herzog P, et al. Primary follicular lymphoma of the duodenum is a distinct mucosal/submucosal variant of follicular lymphoma: a retrospective study of 63 cases. J Clin Oncol. 2011;29(11):1445–51.

    PubMed  Google Scholar 

  145. Brunner P, Rufle A, Dirnhofer S, Lohri A, Willi N, Cathomas G, Tzankov A, Juskevicius D. Follicular lymphoma transformation into histiocytic sarcoma: indications for a common neoplastic progenitor. Leukemia. 2014;28(9):1937–40.

    CAS  PubMed  Google Scholar 

  146. LeBrun DP, Ngan BY, Weiss LM, Huie P, Warnke RA, Cleary ML. The bcl-2 oncogene in Hodgkin’s disease arising in the setting of follicular non-Hodgkin’s lymphoma. Blood. 1994;83(1):223–30.

    CAS  PubMed  Google Scholar 

  147. Brauninger A, Hansmann ML, Strickler JG, Dummer R, Burg G, Rajewsky K, Kuppers R. Identification of common germinal-center B-cell precursors in two patients with both Hodgkin’s disease and non-Hodgkin’s lymphoma. N Engl J Med. 1999;340(16):1239–47.

    CAS  PubMed  Google Scholar 

  148. Raffeld M, Wright JJ, Lipford E, Cossman J, Longo DL, Bakhshi A, Korsmeyer SJ. Clonal evolution of t(14;18) follicular lymphomas demonstrated by immunoglobulin genes and the 18q21 major breakpoint region. Cancer Res. 1987;47(10):2537–42.

    CAS  PubMed  Google Scholar 

  149. De Jong D, Voetdijk BM, Beverstock GC, van Ommen GJ, Willemze R, Kluin PM. Activation of the c-myc oncogene in a precursor-B-cell blast crisis of follicular lymphoma, presenting as composite lymphoma. N Engl J Med. 1988;318(21):1373–8.

    PubMed  Google Scholar 

  150. Lossos IS, Gascoyne RD. Transformation of follicular lymphoma. Best Pract Res Clin Haematol. 2011;24(2):147–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bouska A, McKeithan TW, Deffenbacher KE, Lachel C, Wright GW, Iqbal J, Smith LM, Zhang W, Kucuk C, Rinaldi A, et al. Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood. 2014;123(11):1681–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Fitzgibbon J, Iqbal S, Davies A, O’Shea D, Carlotti E, Chaplin T, Matthews J, Raghavan M, Norton A, Lister TA, et al. Genome-wide detection of recurring sites of uniparental disomy in follicular and transformed follicular lymphoma. Leukemia. 2007;21(7):1514–20.

    CAS  PubMed  Google Scholar 

  153. Carlotti E, Wrench D, Matthews J, Iqbal S, Davies A, Norton A, Hart J, Lai R, Montoto S, Gribben JG, et al. Transformation of follicular lymphoma to diffuse large B-cell lymphoma may occur by divergent evolution from a common progenitor cell or by direct evolution from the follicular lymphoma clone. Blood. 2009;113(15):3553–7.

    CAS  PubMed  Google Scholar 

  154. Okosun J, Bodor C, Wang J, Araf S, Yang CY, Pan C, Boller S, Cittaro D, Bozek M, Iqbal S, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 2014;46(2):176–81.

    CAS  PubMed  Google Scholar 

  155. Green MR, Alizadeh AA. Common progenitor cells in mature B-cell malignancies: implications for therapy. Curr Opin Hematol. 2014;21(4):333–40.

    CAS  PubMed  Google Scholar 

  156. Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL, Kela I, Hopmans ES, Myklebust JH, Ji H, et al. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood. 2013;121(9):1604–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Lorsbach RB, Shay-Seymore D, Moore J, Banks PM, Hasserjian RP, Sandlund JT, Behm FG. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood. 2002;99(6):1959–64.

    CAS  PubMed  Google Scholar 

  158. Oschlies I, Salaverria I, Mahn F, Meinhardt A, Zimmermann M, Woessmann W, Burkhardt B, Gesk S, Krams M, Reiter A, et al. Pediatric follicular lymphoma--a clinico-pathological study of a population-based series of patients treated within the non-Hodgkin’s lymphoma--Berlin-Frankfurt-Munster (NHL-BFM) multicenter trials. Haematologica. 2010;95(2):253–9.

    PubMed  Google Scholar 

  159. Liu Q, Salaverria I, Pittaluga S, Jegalian AG, Xi L, Siebert R, Raffeld M, Hewitt SM, Jaffe ES. Follicular lymphomas in children and young adults: a comparison of the pediatric variant with usual follicular lymphoma. Am J Surg Pathol. 2013;37(3):333–43.

    PubMed  PubMed Central  Google Scholar 

  160. Kussick SJ, Kalnoski M, Braziel RM, Wood BL. Prominent clonal B-cell populations identified by flow cytometry in histologically reactive lymphoid proliferations. Am J Clin Pathol. 2004;121(4):464–72.

    PubMed  Google Scholar 

  161. Green MR, Kihira S, Liu CL, Nair RV, Salari R, Gentles AJ, Irish J, Stehr H, Vicente-Duenas C, Romero-Camarero I, et al. Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proc Natl Acad Sci U S A. 2015;112(10):E1116–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Louissaint A Jr, Ackerman AM, Dias-Santagata D, Ferry JA, Hochberg EP, Huang MS, Iafrate AJ, Lara DO, Pinkus GS, Salaverria I, et al. Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood. 2012;120(12):2395–404.

    CAS  PubMed  Google Scholar 

  163. Salaverria I, Philipp C, Oschlies I, Kohler CW, Kreuz M, Szczepanowski M, Burkhardt B, Trautmann H, Gesk S, Andrusiewicz M, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood. 2011;118(1):139–47.

    CAS  PubMed  Google Scholar 

  164. Solal-Celigny P, Roy P, Colombat P, White J, Armitage JO, Arranz-Saez R, Au WY, Bellei M, Brice P, Caballero D, et al. Follicular lymphoma international prognostic index. Blood. 2004;104(5):1258–65.

    CAS  PubMed  Google Scholar 

  165. van de Schans SA, Steyerberg EW, Nijziel MR, Creemers GJ, Janssen-Heijnen ML, van Spronsen DJ. Validation, revision and extension of the follicular lymphoma international prognostic index (FLIPI) in a population-based setting. Ann Oncol. 2009;20(10):1697–702.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhjot Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, P. (2020). Follicular Lymphoma: Definition, Epidemiology, Pathobiology – Lymphomagenesis, Morphology, Variants, Immunophenotype, Prognostic Factors, Transformation. In: Kaur, P. (eds) Follicular Lymphoma and Mantle Cell Lymphoma. Molecular and Translational Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-49741-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49741-5_1

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-49740-8

  • Online ISBN: 978-3-030-49741-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics