Skip to main content

Deep Learning Techniques for Geospatial Data Analysis

  • Chapter
  • First Online:
Machine Learning Paradigms

Abstract

Consumer electronic devices such as mobile handsets, goods tagged with RFID labels, location and position sensors are continuously generating a vast amount of location enriched data called geospatial data. Conventionally such geospatial data is used for military applications. In recent times, many useful civilian applications have been designed and deployed around such geospatial data. For example, a recommendation system to suggest restaurants or places of attraction to a tourist visiting a particular locality. At the same time, civic bodies are harnessing geospatial data generated through remote sensing devices to provide better services to citizens such as traffic monitoring, pothole identification, and weather reporting. Typically such applications are leveraged upon non-hierarchical machine learning techniques such as Naive-Bayes Classifiers, Support Vector Machines, and decision trees. Recent advances in the field of deep-learning showed that Neural Network-based techniques outperform conventional techniques and provide effective solutions for many geospatial data analysis tasks such as object recognition, image classification, and scene understanding. The chapter presents a survey on the current state of the applications of deep learning techniques for analyzing geospatial data. The chapter is organized as below: (i) A brief overview of deep learning algorithms. (ii)Geospatial Analysis: a Data Science Perspective (iii) Deep-learning techniques for Remote Sensing data analytics tasks (iv) Deep-learning techniques for GPS data analytics (iv) Deep-learning techniques for RFID data analytics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems (2012), pp. 1097–1105

    Google Scholar 

  2. I. Goodfellow, Y. Bengio, A. Courville, in Deep Learning (MIT Press, 2016)

    Google Scholar 

  3. L. Deng, A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inform. Process. 3 (2014)

    Google Scholar 

  4. C. Cao, F. Liu, H. Tan, D. Song, W. Shu, W. Li, Y. Zhou, X. Bo, Z. Xie, Deep learning and its applications in biomedicine. Genom. Proteom. Bioinform. 16(1), 17–32 (2018)

    Google Scholar 

  5. H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, T. Blaschke, The rise of deep learning in drug discovery. Drug Discov Today 23(6), 1241–1250 (2018)

    Google Scholar 

  6. L. Zhang, L. Zhang, D. Bo, Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 4(2), 22–40 (2016)

    Google Scholar 

  7. P. Domingos, A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)

    Google Scholar 

  8. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436 (2015)

    Google Scholar 

  9. Q.V. Le et al., A tutorial on deep learning part 2: autoencoders, convolutional neural networks and recurrent neural networks. Google Brain (2015), pp. 1–20

    Google Scholar 

  10. S.K. Seelan, S. Laguette, G.M. Casady, G.A. Seielstad, Remote sensing applications for precision agriculture: a learning community approach. Remote Sens. Environ. 88(1–2), 157–169 (2003)

    Google Scholar 

  11. T.J. Jackson, J. Schmugge, E.T. Engman, Remote sensing applications to hydrology: soil moisture. Hydrol. Sci. J. 41(4), 517–530 (1996)

    Google Scholar 

  12. L. Wang, J.J. Qu, Satellite remote sensing applications for surface soil moisture monitoring: a review. Front. Earth Sci. China 3(2), 237–247 (2009)

    Google Scholar 

  13. K. Themistocleous,The use of USV platforms for remote sensing applications: case studies in cyprus, in Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014), vol. 9229 (International Society for Optics and Photonics, 2014), p. 92290S

    Google Scholar 

  14. C.A. Rokhmana, The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia. Procedia Environ. Sci. 24, 245–253 (2015)

    Google Scholar 

  15. K. Daniel, C. Wietfeld, Using public network infrastructures for USAV remote sensing in civilian security operations. Technical report, Dortmund University, Germany FR (2011)

    Google Scholar 

  16. W. Dong, J. Li, R. Yao, C. Li, T. Yuan, L. Wang, Characterizing driving styles with deep learning. arXiv preprint arXiv:1607.03611 (2016)

  17. X. Niu, Y. Zhu, X. Zhang, Deepsense: a novel learning mechanism for traffic prediction with taxi GPS traces, in 2014 IEEE Global Communications Conference (IEEE, 2014), pp. 2745–2750

    Google Scholar 

  18. X. Li, Y. Zhang, M. Li, I. Marsic, J.W. Yang, R.S. Burd, Deep neural network for RFID-based activity recognition, in Proceedings of the Eighth Wireless of the Students, by the Students, and for the Students Workshop (ACM, 2016), pp. 24–26

    Google Scholar 

  19. C. Wang, P. Jiang, Deep neural networks based order completion time prediction by using real-time job shop RFID data. J. Intell. Manuf. 30(3), 1303–1318 (2019)

    Google Scholar 

  20. K. Johnston, J.M. Ver Hoef, K. Krivoruchko, N. Lucas, Using ArcGIS Geostatistical Analyst, vol. 380 (Esri Redlands, 2001)

    Google Scholar 

  21. N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, R. Moore, Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017)

    Google Scholar 

  22. QGIS Developer Team et al., QGIS geographic information system (Open Source Geospatial Foundation, 2009)

    Google Scholar 

  23. V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Google Scholar 

  24. K.G. Lore, A. Akintayo, S. Sarkar, LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)

    Google Scholar 

  25. T.-H. Chan, K. Jia, S. Gao, L. Jiwen, Z. Zeng, Y. Ma, Pcanet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    MathSciNet  MATH  Google Scholar 

  26. J. Wu, Y. Yu, C. Huang, K. Yu., Deep multiple instance learning for image classification and auto-annotation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 3460–3469

    Google Scholar 

  27. L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, B.A. Johnson, Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 152, 166–177 (2019)

    Google Scholar 

  28. X.X.Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, F. Fraundorfer, Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 5(4), 8–36 (2017)

    Google Scholar 

  29. J. Xie, L. Xu, E. Chen, Image denoising and inpainting with deep neural networks, in Advances in Neural Information Processing Systems (2012), pp. 341–349

    Google Scholar 

  30. K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    MathSciNet  MATH  Google Scholar 

  31. S. Nah, T.H. Kim, K.M. Lee, Deep multi-scale convolutional neural network for dynamic scene deblurring. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 3883–3891

    Google Scholar 

  32. T.M. Nimisha, A.K. Singh, A.N. Rajagopalan, Blur-invariant deep learning for blind-deblurring, in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 4752–4760

    Google Scholar 

  33. Y. Liu, X. Chen, Z. Wang, Z.J. Wang, R.K. Ward, X. Wang, Deep learning for pixel-level image fusion: recent advances and future prospects. Inform. Fusion 42, 158–173 (2018)

    Google Scholar 

  34. G. Masi, D. Cozzolino, L. Verdoliva, G. Scarpa, Pansharpening by convolutional neural networks. Remote Sens. 8(7), 594 (2016)

    Google Scholar 

  35. D. Yan, C. Li, N. Cong, L. Yu, P. Gong, A structured approach to the analysis of remote sensing images. Int. J. Remote Sens. 1–24 (2019)

    Google Scholar 

  36. N.T. Dong, L. Winkler, M. Khosla, Revisiting feature selection with data complexity for biomedicine. bioRxiv, p. 754630 (2019)

    Google Scholar 

  37. W. Zhao, D. Shihong, Spectral-spatial feature extraction for hyperspectral image classification: dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 54(8), 4544–4554 (2016)

    Google Scholar 

  38. Q. Zou, L. Ni, T. Zhang, Q. Wang, Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 12(11), 2321–2325 (2015)

    Google Scholar 

  39. W. Wang, R. Guo, Y. Tian, W. Yang, CFSNet: toward a controllable feature space for image restoration. arXiv preprint arXiv:1904.00634 (2019)

  40. Z. Li, L. Huang, J. He, A multiscale deep middle-level feature fusion network for hyperspectral classification. Remote Sens. 11(6), 695 (2019)

    Google Scholar 

  41. D. Tuia, C. Persello, L. Bruzzone, Domain adaptation for the classification of remote sensing data: an overview of recent advances. IEEE Geosci. Remote Sens. Mag. 4(2), 41–57 (2016)

    Google Scholar 

  42. Y. Bengio, Deep learning of representations for unsupervised and transfer learning, in Proceedings of ICML workshop on unsupervised and transfer learning (2012), pp. 17–36

    Google Scholar 

  43. C.-I. Cira, R. Alcarria, M.-Á. Manso-Callejo, F. Serradilla, A deep convolutional neural network to detect the existence of geospatial elements in high-resolution aerial imagery, in Multidisciplinary Digital Publishing Institute Proceedings, vol. 19 (2019), p. 17

    Google Scholar 

  44. A. Estrada, A. Jenkins, B. Brock, C. Mangold, Broad area geospatial object detection using autogenerated deep learning models, US Patent App. 10/013,774, 3 July 2018

    Google Scholar 

  45. R.C. Weih Jr., N.D. Riggan Jr., Object-based classification vs. pixel-based classification: comparitive importance of multi-resolution imagery. in Proceedings of GEOBIA 2010: Geographic Object-Based Image Analysis, Ghent, Belgium, 29 June–2 July 2010; 38, Part 4/C7, p. 6

    Google Scholar 

  46. A.D. Gregorio, Land Cover Classification System: Classification Concepts and User Manual: LCCS, vol. 2 (Food & Agriculture Org., 2005)

    Google Scholar 

  47. N. Kussul, M. Lavreniuk, S. Skakun, A. Shelestov, Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 14(5), 778–782 (2017)

    Google Scholar 

  48. G.J. Scott, M.R. England, W.A. Starms, R.A. Marcum, C.H. Davis, Training deep convolutional neural networks for land–cover classification of high-resolution imagery. IEEE Geosci. Remote Sens. Lett. 14(4), 549–553 (2017)

    Google Scholar 

  49. X. Guang, X. Zhu, F. Dongjie, J. Dong, X. Xiao, Automatic land cover classification of geo-tagged field photos by deep learning. Environ. Model. Softw. 91, 127–134 (2017)

    Google Scholar 

  50. Z. Sun, L. Di, H. Fang, Using long short-term memory recurrent neural network in land cover classification on landsat and cropland data layer time series. Int. J. Remote Sens. 40(2), 593–614 (2019)

    Google Scholar 

  51. P. Helber, B. Bischke, A. Dengel, D. Borth, Eurosat: a novel dataset and deep learning benchmark for land use and land cover classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 12(7), 2217–2226 (2019)

    Google Scholar 

  52. C. Cao, S. Dragićević, S. Li, Land-use change detection with convolutional neural network methods. Environments 6(2), 25 (2019)

    Google Scholar 

  53. G. Cheng, J. Han, L. Xiaoqiang, Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105(10), 1865–1883 (2017)

    Google Scholar 

  54. A. Salman, A. Jalal, F. Shafait, A. Mian, M. Shortis, J. Seager, E. Harvey, Fish species classification in unconstrained underwater environments based on deep learning. Limnol. Oceanogr. Methods 14(9), 570–585 (2016)

    Google Scholar 

  55. S. Faza, E.B. Nababan, S. Efendi, M. Basyuni, R.F. Rahmat, An initial study of deep learning for mangrove classification, in IOP Conference Series: Materials Science and Engineering, vol. 420 (IOP Publishing, 2018), p. 012093

    Google Scholar 

  56. X. Ma, Y. Haiyang, Y. Wang, Y. Wang, Large-scale transportation network congestion evolution prediction using deep learning theory. PLoS One 10(3), e0119044 (2015)

    Google Scholar 

  57. N. Pradhananga, J. Teizer, Automatic spatio-temporal analysis of construction site equipment operations using GPS data. Autom. Constr. 29, 107–122 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding provided by Ministry of Human Resource Development (MHRD), Government of India, under the Pandit Madan Mohan National Mission on Teachers Training (PMMMNMTT). The work presented in this chapter is based on the course material developed to train engineering teachers on the topics of Geospatial Analysis and Product Design Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind W. Kiwelekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiwelekar, A.W., Mahamunkar, G.S., Netak, L.D., Nikam, V.B. (2020). Deep Learning Techniques for Geospatial Data Analysis. In: Tsihrintzis, G., Jain, L. (eds) Machine Learning Paradigms. Learning and Analytics in Intelligent Systems, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-49724-8_3

Download citation

Publish with us

Policies and ethics