Skip to main content

Evaluation of the Effect of a PCL/nanoSiO\(_2\) Implant on Bone Tissue Regeneration Using X-ray Micro-Computed Tomography

  • Chapter
  • First Online:
Information Technology in Biomedicine

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1186))

Abstract

This paper evaluates the regeneration process of large bone defects filled with a highly porous (nano) composite implant. A polycaprolactone—based scaffold modified with nanometric silica was introduced into bone defects created in the distal femoral epiphyses of rabbits. The bone tissue regeneration process was evaluated 1, 2, 3 and 6 months after implantation. Empty bone defects served as a control. The osseointegration process was evaluated using the parameters of cancellous bone microstructure. 16 bone tissue samples were imaged using X-ray micro-computed tomography (XMT). There were 1000 2D images in each measurement, which in total gave 16000 2D images. In the end, in this work 200 2D images were picked for detailed analysis. The studies have shown that the PCL/nanoSiO\(_2\) composite implant supports successfully the initial phase of bone regeneration. In each of the reference periods, a greater volume of new bone tissue was observed for the implanted samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bose, S. et al.: Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30, 10, 546–54 (2012). https://doi.org/10.1016/j.tibtech.2012.07.005

  2. Boyd, S.K.: Micro Computed Tomography. In: Sensen, C.W., B.H., (eds.) Advanced Imaging in Biology and Medicine Technology, Software Environments, Applications, pp. 3–25. Springer, Berlin (2009)

    Google Scholar 

  3. Cancedda, R. et al.: Bulk and interface investigations of scaffolds and tissue–engineered bones by X–ray microtomography and X–ray microdiffraction. Biomaterials 28(15), 2505–24 (2007). https://doi.org/10.1016/j.biomaterials.2007.01.022

  4. Dang, W. et al.: A bifunctional scaffold with CuFeSe 2 nanocrystals for tumor therapy and bone reconstruction. Biomaterials 160(92–106) (2018). https://doi.org/10.1016/j.biomaterials.2017.11.020

  5. Dziadek, M. et al.: Biodegradable ceramic-polymer composites for biomedical applications: a review. Mater. Sci. Eng. C. (2016). https://doi.org/10.1016/j.msec.2016.10.014

  6. Feng, J. et al.: Stimulating effect of silica-containing nanospheres on proliferation of osteoblast-like cells. J. Mater. Sci. Mater. Med. 18(11), 2167–72 (2007). https://doi.org/10.1007/s10856--007-3229-9

  7. Gentile, F. et al.: Cells preferentially grow on rough substrates. Biomaterials 31 (28), 7205–12 (2010). https://doi.org/10.1016/j.biomaterials.2010.06.016

  8. Guldberg, R.E. et al.: 3D imaging of tissue integration with porous biomaterials. Biomaterials 29(28), 3757–61 (2008). https://doi.org/10.1016/j.biomaterials.2008.06.018

  9. Ho, S.T., Hutmacher, D.W.: A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27(8), 1362–76 (2006). https://doi.org/10.1016/j.biomaterials.2005.08.035

  10. Khan, S.N. et al.: Osseointegration and more–a review of literature. Indian J. Dent. 3(2), 72–76 (2012). https://doi.org/10.1016/j.ijd.2012.03.012

  11. van Lenthe, G.H. et al.: Nondestructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo. Biomaterials 28(15), 2479–90 (2007). https://doi.org/10.1016/j.biomaterials.2007.01.017

  12. Lohmann, P. et al.: Bone regeneration induced by a 3D architectured hydrogel in a rat critical-size calvarial defect. Biomaterials 113, 158–169 (2016). https://doi.org/10.1016/j.biomaterials.2016.10.039

  13. van der Pol, U. et al.: Augmentation of bone defect healing using a new biocomposite scaffold: an in vivo study in sheep. Acta Biomater. 6(9), 3755–62 (2010). https://doi.org/10.1016/j.actbio.2010.03.028

  14. Puleo, D.: a, Nanci, a: Understanding and controlling the bone-implant interface. Biomaterials. 20(23–24), 2311–21 (1999)

    Article  Google Scholar 

  15. Rezwan, K. et al.: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18), 3413–31 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.039

  16. Roosa, S.M.M. et al.: The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J. Biomed. Mater. Res. A. 92(1), 359–68 (2010). https://doi.org/10.1002/jbm.a.32381

  17. Rüegsegger, P., et al.: A microtomographic system for the nondestructive evaluation of bone architecture. Calcif. Tissue Int. 58(1), 24–9 (1996)

    Article  Google Scholar 

  18. Shao, X.X. et al.: Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27(7), 1071–80 (2006). https://doi.org/10.1016/j.biomaterials.2005.07.040

  19. Shim, J.-H. et al.: Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology. J. Mater. Sci. Mater. Med. 23(12), 2993–3002 (2012). https://doi.org/10.1007/s10856-012-4761-9

  20. Stauber, M., Müller, R.: Volumetric spatial decomposition of trabecular bone into rods and plates–a new method for local bone morphometry. Bone 38(4), 475–84 (2006). https://doi.org/10.1016/j.bone.2005.09.019

  21. Stodolak-Zych, E. et al.: Effect of silica nanoparticle characteristics on the bioactivity of nanocomposites based on bioresorbable polymer. In: Zviad, K. (ed.) Second International Conference for Students and Young Scientists on Materials Processing Science, pp. 59–65 (2012)

    Google Scholar 

  22. Stodolak-Zych, E. et al.: Osteoconductive nanocomposite materials for bone regeneration. Mater. Sci. Forum. 730–732(November 2012), 38–43 (2012). https://doi.org/10.4028/www.scientific.net/MSF.730-732.38

  23. Teo, J.C.M. et al.: Correlation of cancellous bone microarchitectural parameters from microCT to CT number and bone mechanical properties. Mater. Sci. Eng. C. 27(2), 333–339 (2007). https://doi.org/10.1016/j.msec.2006.05.003

  24. Thomsen, J.S. et al.: Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies. J. Microsc. 218(Pt 2), 171–9 (2005). https://doi.org/10.1111/j.1365-2818.2005.01469.x

  25. Walsh, W.R. et al.: \(\beta \)-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials 29(3), 266–271 (2008). https://doi.org/10.1016/j.biomaterials.2007.09.035

  26. Wang, X., et al.: Enhanced bone regeneration using an insulin- loaded nano-hydroxyapatite/collagen/PLGA composite scaffold. Int. J. Nanomed. 13, 117–127 (2018)

    Article  Google Scholar 

  27. Wang, Y. et al.: Micro-CT in drug delivery. Eur. J. Pharm. Biopharm. 74(1), 41–9 (2010). https://doi.org/10.1016/j.ejpb.2009.05.008

  28. Westhauser, F. et al.: Micro-computed-tomography-guided analysis of in vitro structural modifications in two types of 45S5 bioactive glass based scaffolds. Materials (Basel). 10(12) (2017). https://doi.org/10.3390/ma10121341

  29. Wiecheć, A., et al.: The study of human osteoblast-like MG 63 cells proliferation on resorbable polymer-based nanocomposites modified with ceramic and carbon nanoparticles. ACTA Phys. Pol. A. 121(2), 546–550 (2012)

    Article  Google Scholar 

  30. Williams, J.M. et al.: Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 26(23), 4817–27 (2005). https://doi.org/10.1016/j.biomaterials.2004.11.057

Download references

Acknowledgements

The authors thank Dr inż. Ewa Stodolak-Zych from AGH University of Science and Technology in Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials, for providing materials for research and valuable consultations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Jędzierowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jędzierowska, M., Binkowski, M., Koprowski, R., Wróbel, Z. (2021). Evaluation of the Effect of a PCL/nanoSiO\(_2\) Implant on Bone Tissue Regeneration Using X-ray Micro-Computed Tomography. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. Advances in Intelligent Systems and Computing, vol 1186. Springer, Cham. https://doi.org/10.1007/978-3-030-49666-1_9

Download citation

Publish with us

Policies and ethics