Skip to main content

Color Duplex Ultrasound in Dialysis Access Surveillance

  • Living reference work entry
  • First Online:
Noninvasive Vascular Diagnosis

Abstract

Failure of dialysis access maturation or dysfunction during chronic hemodialysis cannulation is a common clinical problem in the end-stage renal disease patient. Duplex ultrasound imaging with volume flow estimation is the recommended diagnostic technique to identify anatomic conditions preventing access maturation, conduit injury caused by cannulation, low access volume flow, or conduit aneurysmal degeneration. The hemodynamic consequence of a duplex-identified access stenosis on volume flow or digit ischemia due to access-associated steal can be determined based on the proximal and distal brachial artery pulsed-Doppler arterial waveforms and flow velocity. Dialysis access maturation can be predicted by imaging of conduit for diameter and depth and the flow hemodynamics of the inflow artery and/or access conduit. Access volume flow can be estimated based on measurements of the inflow artery systolic and end-diastolic flow velocities which allows classification into three ranges: low (<600 ml/min), moderate (600–800 ml/min), and high (>800 ml/min). An access flow of >800 mL/min predicts successful hemodialysis when the access conduit has appropriate diameter (≥6 mm) and depth (<6 mm) for cannulation. When access flow is low (<600 ml/min), indicating maturation failure or dysfunction, the presence of a duplex-identified access stenosis can guide the decision for access revision. The routine application of color duplex ultrasound surveillance after autogenous vein or prosthetic bridge graft dialysis access procedures is recommended to predict access maturation and identify conditions impairing access function in the renal failure patient whose life is dependent on chronic hemodialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Voorzatt BM, van der Boot KEA, Janmaat CJ, van Schaik J, Dekker FW. Arteriovenous fistula failure in a large cohort of hemodialysis patients in the Netherlands. World J Surg. 2018;42:1895–903.

    Article  Google Scholar 

  2. Cinat ME, Hopkins J, Wilson SE. A prospective evaluation of PTFE graft patency and surveillance techniques in hemodialysis access. Ann Vasc Surg. 1999;13:191–8.

    Article  CAS  Google Scholar 

  3. Henricus JT, Bots ML, Wittens C, Schrama Y, Moll FL, Blankestijn PJ. Hemodialysis arteriovenous fistula patency revisited: results of a prospective multicenter initiative. CJASN. 2008;3:714–9.

    Article  Google Scholar 

  4. Ascher E, Gade P, Hingorani A, Mazzariol F, Gunduz Y, Fodera M, Yorkovich W. Changes in the practice of angioaccess surgery: impact of dialysis outcome and quality initiative recommendations. J Vasc Surg. 2000;31:84–92.

    Article  CAS  Google Scholar 

  5. Ko SH, Bandyk DF, Hodgkiss-Harlow KD, Barleben A, Lane J. Estimation of brachial artery volume flow by duplex ultrasound imaging predicts dialysis access maturation. J Vasc Surg. 2015;61:1521–8.

    Article  Google Scholar 

  6. Inui T, Bandyk DF, Hodgkiss-Harlow D. Brachial artery flow assessment by duplex ultrasound predicts dialysis access steal syndrome. Ann Vasc Surg. 2017;43:50–3.

    Google Scholar 

  7. KDOQI CLINICAL PRACTICE GUIDELINE FOR VASCULAR ACCESS: 2019. UPDATE www.kidney.org

  8. Robbin ML, Greene T, Allon M, et al. Prediction of arteriovenous fistula clinical maturation from postoperative ultrasound measurement: findings from the hemodialysis fistula maturation study. JASN. 2018;29:2735–44.

    Article  Google Scholar 

  9. Mauro R, Pini R, Fagggioli G, et al. Impact of duplex surveillance program on patency of prosthetic arteriovenous graft for hemodialysis: a single center experience. Ann Vasc Surg. 2015;29:1211–7.

    Article  Google Scholar 

  10. Plato SA, Kudlaty EA, Allemang MT, et al. Elevated peak systolic velocity and velocity ratio from duplex ultrasound are associated with hemodynamically significant lesions in arteriovenous access. Ann Vasc Surg. 2016;35:68–74.

    Article  Google Scholar 

  11. Sands JJ, Miranda CL. Prolongation of hemodialysis access survival with elective revision. Clin Nephrol. 1995;44:329–33.

    CAS  PubMed  Google Scholar 

  12. Trinh KN, Wilson SE, Gordon IL, Williams RA. Postintervention patency: A comparison of stenting versus patch angioplasty for dysfunctional hemodialysis access sites. Ann Vasc Surg. 2016;33:120–5.

    Article  Google Scholar 

  13. Besarab A, Sherman R. The relationship of recirculation to access blood flow. Am J Kidney Dis. 1997;29:223–9.

    Article  CAS  Google Scholar 

  14. Windus DW, Audrain J, Vanderson R, et al. Optimization of high-efficiency hemodialysis by detection and correction of fistula dysfunction. Kidney Int. 1990;38:337–41.

    Article  CAS  Google Scholar 

  15. Daniels ID, Berlyne OM, Barth RH. Blood flow rates and accesses recirculation in hemodialysis. Int J Artif Organs. 1992;15:470–4.

    Article  CAS  Google Scholar 

  16. May RE, Himmelfarb J, Yenicesu M, et al. Predictive measures of vascular access thrombosis: a prospective study. Kidney Int. 1997;52:1656–62.

    Article  CAS  Google Scholar 

  17. Bay WH, Henry ML, Lazarus JM, et al. Predicting hemodialysis access failures with color flow Doppler ultrasound. Am J Nephrol. 1998;18:296–304.

    Article  CAS  Google Scholar 

  18. Bosman PJ, Boereboom FTJ, Smits HFM, et al. Pressure or flow recordings for the surveillance of hemodialysis grafts. Kidney Int. 1997;52:1084–8.

    Article  CAS  Google Scholar 

  19. Zierler BK, Kirkman TR, Kraiss LW, et al. Accuracy of duplex scanning for measurement of arterial volume flow. J Vasc Surg. 1992;16:520–6.

    Article  CAS  Google Scholar 

  20. Depner TA, Krivitski NM. Clinical measurement of blood flow in hemodialysis access fistulae and graft by ultrasound dilution. ASAIO J. 1995;41:M745–9.

    Article  CAS  Google Scholar 

  21. Shackleton CR, Taylor DC, Buckley AR, et al. Predicting failure in PTFE vascular access grafts for hemodialysis: a pilot study. Can J Surg. 1987;30:442–4.

    CAS  PubMed  Google Scholar 

  22. Johnson CP, Zhu Y, Matt C, et al. Prognostic value of intraoperative blood flow measurements in vascular access surgery. Surgery. 1998;124:729–38.

    Article  CAS  Google Scholar 

  23. Back MR, Maynard M, Winkler A, Bandyk DF. Expected flow parameters within hemodialysis access and selection for remedial intervention of nonmaturing conduits. Vasc Endovasc Surg. 2008;42(2):150–8.

    Article  Google Scholar 

  24. Sands J, Young S, Miranda C. The effect of Doppler flow screening studies and elective revisions on dialysis access failure. ASAIO J. 1992;38:M524–7.

    Article  CAS  Google Scholar 

  25. Sands J, Glidden D, Miranda C. Hemodialysis access flow measurement: comparison of ultrasound dilution and duplex ultrasonography. ASAIO J. 1996;42:M899–901.

    Article  CAS  Google Scholar 

  26. Johnson CP, Zhu Y, Matt C, et al. Prognostic value of intraoperative blood flow measurements in vascular access surgery. Surgery. 1998;124:729–38.

    Article  CAS  Google Scholar 

  27. MacDonald MJ, Martin LG, Hughes JD, et al. Distribution and severity of stenoses in functioning arteriovenous grafts: a duplex and angiographic study. J Vasc Technol. 1996;20:131–6.

    Google Scholar 

  28. Lumsden AB, MacDonald MJ, Kikeri D, et al. Prophylactic balloon angioplasty fails to prolong the patency of PTFE arteriovenous grafts: results of a prospective randomized study. J Vasc Surg. 1997;24:382–92.

    Article  Google Scholar 

  29. Tordoir JHM, de Bruin HG, Hoeneveld H, Eikelboom BC, Kitslaar PJ. Duplex ultrasound scanning in the assessment of arteriovenous fistulas created for hemodialysis access: comparison with digital subtraction angiography. J Vasc Surg. 1989;10:122–8.

    Article  CAS  Google Scholar 

  30. Older RA, Gizienski TA, Wilkowski MJ, Angle JF, Cote DA. Hemodialysis access stenosis: early detection with color Doppler ultrasound. Radiology. 1998;207:161–4.

    Article  CAS  Google Scholar 

  31. Passman MA, Criado E, Farber MA, et al. Efficiency of color flow duplex imaging for proximal upper extremity venous out flow obstruction in hemodialysis patients. J Vasc Surg. 1998;28:869–75.

    Article  CAS  Google Scholar 

  32. Middleton WD, Picus DD, Marx MV, Melson GL. Color Doppler sonography of hemodialysis vascular access: comparison with angiography. AJR. 1989;152:633–9.

    Article  CAS  Google Scholar 

  33. Dousset V, Grenier N, Douws C, et al. Hemodialysis grafts: color Doppler flow imaging correlated with digital subtraction angiography and functional status. Radiology. 1991;181:89–94.

    Article  CAS  Google Scholar 

  34. Itoga NK, Ullery BW, Tran K, Lee GK, Aslani OO, Bech FR, Zhou W. Use of a proactive duplex ultrasound protocol for hemodialysis access. J Vasc Surg. 2016;64:1042–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis F. Bandyk .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bandyk, D.F., Hodgkiss-Harlow, K.D. (2021). Color Duplex Ultrasound in Dialysis Access Surveillance. In: AbuRahma, A.F., Perler, B.A. (eds) Noninvasive Vascular Diagnosis. Springer, Cham. https://doi.org/10.1007/978-3-030-49616-6_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49616-6_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49616-6

  • Online ISBN: 978-3-030-49616-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics