Skip to main content

Abstract

Malicious software has had a massive impact on the current digital world. Malware attacks have been skyrocketed in numbers in the last decade. Among different malware variants, ransomware became very popular as it locks up the victim’s system and demands ransom payment for regaining access. The growth of malware occurs exponentially, but the mitigation strategies are not very successful as there are still stories of attacks in the world. To discriminate between new unknown threat and threat caused by mere variants of known malware, four different methods discussed in this paper are Signature based detection, Behavior based approach, Honeypot based approach, and Hybrid approach. The quality of the detection mechanism is determined by the technique it uses. It is necessary to study different techniques and to understand its strengths and limitations. This survey examines through various techniques that are used by the industry in mitigating the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Homayoun, S., Dehghantanha, A., Ahmadzadeh, M., Hashemi, S., Khayami, R.: Know abnormal, find evil: frequent pattern mining for ransomware threat hunting and intelligence. IEEE Trans. Emer. Topics Comput. 8(2), 341–351 (2017). https://doi.org/10.1109/TETC.2017.2756908

    Article  Google Scholar 

  2. Shaukat, S.K., Ribeiro, V.J.: RansomWall: a layered defense system against cryptographic ransomware attacks using machine learning. In: IEEE 10th International Conference on Communication Systems Networks (2018). https://doi.org/10.1109/COMSNETS.2018.8328219

  3. Nataraj, L., Yegneswaran, V., Porras, P., Zhang, J.: A comparative assessment of malware classification using binary texture analysis and dynamic analysis. In: Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence (2011). https://doi.org/10.1145/2046684.2046689

  4. Nataraj, L.: Malware Images: Visualization and Automatic Classification. Vision Research Lab, University of California, Santa Barbara (2011). https://doi.org/10.1145/2016904.2016908

  5. Choi, S., Jang, S., Kim, Y., Kim, J.: Malware detection using malware image and deep learning. In: 2017 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1193–1195 (2017). https://doi.org/10.1109/ICTC.2017.8190895

  6. Gibert, D.: Convolutional Neural Networks for Malware Classification. A thesis presented for the degree of Master in Artificial Intelligence, Universitat de Barcelona (UB) (2016)

    Google Scholar 

  7. Luo, J.-S., Lo, D.C.-T.: Binary malware image classification using machine learning with local binary pattern. In: IEEE International Conference on Big Data (BIGDATA) (2017). https://doi.org/10.1109/BigData.2017.8258512

  8. Raff, E., Zak, R., Cox R., Sylvester, J., Yacci, P., Ward, R., Tracy, A., McLean, M., Nicholas, C.: An investigation of byte n-gram features for malware classification. J. Comput. Virol. Hacking Tech. 14, 1–20 (2018). https://doi.org/10.1007/s11416-016-0283-1

    Article  Google Scholar 

  9. Tabish, S.M., Shafiq, M.Z., Farooq, M.: Malware Detection using statistical analysis of byte-level file content. In: Conference Proceedings of the ACM SIGKDD Workshop on Cyber Security and Intelligence Informatics, Paris (2009). https://doi.org/10.1145/1599272.1599278

  10. Akkas, A., Chachamis, C.N., Fetahu, L.: Malware Analysis of WanaCry Ransomware. https://courses.csail.mit.edu/6.857/2017/project/20.pdf

  11. Bilar, D: Opcodes as predictor for malware. Int. J. Electron. Secur. Digit. Forensics 1(2), 156–168 (2007). https://doi.org/10.1504/IJESDF.2007.016865

    Article  Google Scholar 

  12. Santos, I., Brezo, F., Nieves, J., Penya, Y.K., Sanz, B., Laorden, C., Bringas, P.G.: Idea: opcode-sequence-based malware detection. In: International Symposium on Engineering Secure Software and Systems, pp. 35–43 (2010). https://doi.org/10.1007/978-3-642-11747-3_3

  13. Runwal, N., Low, R.M., Stamp, M.: OpCode graph similarity and metamorphic detection. J. Comput. Virol. 8(1–2), 37–52,(2012). https://doi.org/10.1007/s11416-012-0160-5

    Article  Google Scholar 

  14. Ye, Y., Wang, D., Li, T., Ye, D., Jiang, Q.: An intelligent PE-malware detection system based on association mining. J. Comput. Virol. 4(4), 323–334 (2008). https://doi.org/10.1007/s11416-008-0082-4

    Article  Google Scholar 

  15. KALPA, Introduction to Malware. http://securityresearch.in/index.php/projects/malware_lab/introduction-to-malware/8/

  16. Hofmeyr, S., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls. ACM J. Comput. Secur. 6(3), 151–180 (1998)

    Article  Google Scholar 

  17. Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M.M., Tawbi, N.: Static detection of malicious code in executable programs. Int. J. Req. Eng. 2001(184–189), 79 (2001)

    Google Scholar 

  18. Sekar, R., Bendre, M., Bollineni, P., Dhurjati, D.: A fast automaton-based approach for detecting anomalous program behaviors. In: Proceedings 2001 IEEE Symposium on Security and Privacy (2001). https://doi.org/10.1109/SECPRI.2001.924295

  19. Sung, A.H., Xu, J., Chavez, P., Mukkamala, S.: Static analyzer of vicious executables. In: IEEE 20th Annual Computer Security Applications Conference, pp. 326–334 (2004). https://doi.org/10.1109/CSAC.2004.37

  20. Ye, Y., Li, T., Jiang, Q., Wang, Y.: CIMDS: adapting postprocessing techniques of associative classification for malware detection. IEEE Trans. Syst. Man Cybern. C 40(3), 298–307 (2010). https://doi.org/10.1109/TSMCC.2009.2037978

    Article  Google Scholar 

  21. Snedecor, W., Cochran, W.: Statistical Methods, 8th edn. Iowa State University Press, Iowa City (1989)

    MATH  Google Scholar 

  22. Jeong, K., Lee, H.: Code graph for malware detection. In: Information Networking. ICOIN. International Conference, pp. 1–5 (2008). https://doi.org/10.1109/ICOIN.2008.4472801

  23. Lee, J., Jeong, K., Lee, H.: Detecting metamorphic malwares using code graphs. In: Proceedings of the ACM Symposium on Applied Computing, pp. 1970–1977. ACM, New York (2010). https://doi.org/10.1145/1774088.1774505

  24. Bonfante, G., Kaczmarek, M., Marion, J.Y.: Control Flow Graphs as Malware Signatures. WTCV (2007)

    Google Scholar 

  25. Vigneswaran, K.R., Vinayakumar, R., Soman, K.P., Poornachandran, P.: Evaluating shallow and deep neural networks for network intrusion detection systems in cyber security. In: Ninth International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru (2018). https://doi.org/10.1109/ICCCNT.2018.8494096

  26. Cryptostalker. https://github.com/unixist/randumb#cryptostalker-example

  27. Pingree, L.: Emerging Technology Analysis: Deception Techniques and Technologies Create Security Technology Business Opportunities. https://www.gartner.com/doc/reprints?id=1-2LSQOX3&ct=150824&st=sb&aliId=87768

  28. Hutchins, E.M., Cloppert, M.J., Amin, R.M.: Intelligence-driven computer network defense informed by analysis of adversary campaigns and intrusion kill chains. Lead Issues Inf Warf Secur. Res 1, 1–14 (2011)

    Google Scholar 

  29. Moore, C.: Detecting ransomware with honeypot techniques. In: Cybersecurity and Cyberforensics Conference, pp. 77–81 (2016)

    Google Scholar 

  30. Yago, J.: Security Projects: Anti Ransom (2017). http://www.security-projects.com/?Anti_Ransom

  31. GBH: Microsoft introduced a control folder access to prevent data from ransomware and other malicious apps and threats in Windows 10 insider release

    Google Scholar 

  32. J.A. Gmez-Hernndez, Alvarez-Gonzlez, L., Garca-Teodoro, P.: R-locker: thwarting ransomware action through a honeyfile-based approach. Comput. Secur. 73, 389–398 (2018)

    Google Scholar 

  33. Ahmadian, M.M., Shahriari, H.R.: 2entFOX: a framework for high survivable ransomwares detection. In: 13th International ISC Conference on Information Security and Cryptology (2016). https://doi.org/10.1109/ISCISC.2016.7736455

  34. Hasan, M.M., Rahman, M.M. A support vector machines based ransomware analysis framework with integrated feature set. In: 20th International Conference of Computer and Information Technology (ICCIT) (2017). https://doi.org/10.1109/ICCITECHN.2017.8281835

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna V. James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

James, A.V., Sabitha, S. (2021). Malware Attacks: A Survey on Mitigation Measures. In: Palesi, M., Trajkovic, L., Jayakumari, J., Jose, J. (eds) Second International Conference on Networks and Advances in Computational Technologies. Transactions on Computational Science and Computational Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-49500-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49500-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49499-5

  • Online ISBN: 978-3-030-49500-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics