Skip to main content

A Glimpse of \( \sum_{3} \)-elementarity

  • Chapter
  • First Online:
The Legacy of Kurt Schütte
  • 306 Accesses

Abstract

We take the first step toward analyzing pure \( \sum_{3} \)-elementary substructuresof ordinal numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. A. Alexander. Arithmetical algorithms for elementary patterns. Archive for Mathematical Logic, 54:113–132, 2015.

    Google Scholar 

  2. H. Bachmann. Transfinite Zahlen. Ergebnisse der Mathematik und ihrer Grenzgebiete, 1, 1955.

    Google Scholar 

  3. J. Barwise. Admissible Sets and Structures. Springer, Berlin, 1975.

    Google Scholar 

  4. J. Bridge. A simplification of the Bachmann method for generating large countable ordinals. The Journal of Symbolic Logic, 40:171–185, 1975.

    Google Scholar 

  5. W. Buchholz. Normalfunktionen und konstruktive Systeme von Ordinalzahlen. In J. Diller and G. H. Muller, editors, Proof Theory Symposion Kiel 1974, volume 500 of Springer Lecture Notes in Mathematics, pages 4–25. Springer, 1975.

    Google Scholar 

  6. W. Buchholz. Ordinal analysis of IDν . InW. Buchholz, S. Feferman,W. Pohlers, andW. Sieg, editors, Iterated Inductive Definitions and Subsystems of Analysis, volume 897 of Lecture Notes in Mathematics, pages 243–260. Springer, 1981.

    Google Scholar 

  7. W. Buchholz. A simplified version of local predicativity. In P. H. G. Aczel, H. Simmons, and S. S. Wainer, editors, Proof Theory, pages 115–147. Cambridge University Press, 1992.

    Google Scholar 

  8. W. Buchholz and K. Schutte. Die Beziehungen zwischen den Ordinalzahlsystemen \( \sum \) und \( \varTheta \left( \omega \right) \). Archiv für mathematische Logik und Grundlagenforschung, 172:179–189, 1976.

    Google Scholar 

  9. T. J. Carlson. Ranked β-calculi. Draft.

    Google Scholar 

  10. T. J. Carlson. Ordinal arithmetic and \( \sum_{1} \)-elementarity. Archive for Mathematical Logic, 38:449–460, 1999.

    Google Scholar 

  11. T. J. Carlson. Knowledge, machines, and the consistency of Reinhardt’s strong mechanistic thesis. Annals of Pure and Applied Logic, 105:51–82, 2000.

    Google Scholar 

  12. T. J. Carlson. Elementary patterns of resemblance. Annals of Pure and Applied Logic, 108:19–77, 2001.

    Google Scholar 

  13. T. J. Carlson. Patterns of resemblance of order 2. Annals of Pure and Applied Logic, 158:90–124, 2009.

    Google Scholar 

  14. T. J. Carlson. Generalizing Kruskal’s theorem to pairs of cohabitating trees. Archive for Mathematical Logic, 55:37–48, 2016.

    Google Scholar 

  15. T. J. Carlson. Analysis of a double Kruskal theorem. Transactions of the American Mathematical Society, 369:2897–2916, 2017.

    Google Scholar 

  16. T. J. Carlson and G. Wilken. Normal forms for elementary patterns. The Journal of Symbolic Logic, 77:174–194, 2012.

    Google Scholar 

  17. T. J. Carlson and G. Wilken. Tracking chains of \( \sum_{2} \)-elementarity. Annals of Pure and Applied Logic, 163:23–67, 2012.

    Google Scholar 

  18. J. Diller. Functional interpretations. From the Dialectica interpretation to interpretations of classical and constructive set theory. World Scientific. 2019.

    Google Scholar 

  19. S. Feferman. Three conceptual problems that bug me. Unpublished lecture text for 7th Scandinavian Logic Symposium, Uppsala, 1996.

    Google Scholar 

  20. S. Feferman. Godel’s program for new axioms: Why, where, how and what? In P. Hajek, editor, Lecture Notes in Logic, volume 6, pages 3–22. Springer, 1996.

    Google Scholar 

  21. H. Friedman. Boolean relation theory and incompleteness, 2011. Available online.

    Google Scholar 

  22. H. Friedman,N.Robertson, and P. Seymour. The metamathematics of the graph minor theorem. Contemporary Mathematics Series of the American Mathematical Society, 65:229–261, 1987.

    Google Scholar 

  23. G. Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 112:493–565, 1936.

    Google Scholar 

  24. G. Gentzen. Neue Fassung des Widerspruchsfreiheitsbeweises fur die reine Zahlentheorie. Forschung in Logik und Grundlegung der exakten Wissenschaften, 4:19–44, 1938.

    Google Scholar 

  25. J.-Y. Girard. Π1 2 -logic, Part I: Dilators. Annals of Mathematical Logic, 212:75–219, 1981.

    Google Scholar 

  26. R. L. Goodstein. On the restricted ordinal theorem. The Journal of Symbolic Logic, 9:33–41, 1944.

    Google Scholar 

  27. K. Godel. Uber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

    Google Scholar 

  28. K. Godel. Uber eine bisher noch nicht benutzte Erweiterung des finiten Standpunktes. Dialectica, 12:280–287, 1958.

    Google Scholar 

  29. D. Hilbert. Die Grundlegung der elementaren Zahlenlehre. Mathematische Annalen, 104:485–94, 1931.

    Google Scholar 

  30. J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and \( \lambda \)-Calculus. London Mathematical Society. Cambridge University Press, 1986.

    Google Scholar 

  31. W. A. Howard. Assignment of ordinals to terms for primitive recursive functionals of finite type. In J. Myhill, R. E. Vesley, and A. Kino, editors, Intuitionism and Proof Theory, Proceedings of the Summer Conference at Buffalo N.Y. 1968, pages 443–458. North Holland, 1970.

    Google Scholar 

  32. G. Jager and W. Pohlers. Eine beweistheoretische Untersuchung von \( \Delta^{1}_{2} \)−CA + BI und verwandter Systeme. Sitzungsberichte der Bayerischen Akademie derWissenschaften, pages 1–28, 1982.

    Google Scholar 

  33. A. Kanamori. The Higher Infinite. Springer, 2009.

    Google Scholar 

  34. L. Kirby and J. Paris. Accessible independence results for Peano arithmetic. Bulletin of the London Mathematical Society, 14:285–293, 1982.

    Google Scholar 

  35. J. B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of the American Mathematical Society, 95:210–225, 1960.

    Google Scholar 

  36. G. Lee. Friedman-Weiermann style independence results beyond Peano arithmetic. Journal of the Korean Mathematical Society, 51:383–402, 2014.

    Google Scholar 

  37. A. Montalban. Open questions in reverse mathematics. The Bulletin of Symbolic Logic, 17:431–454, 2011.

    Google Scholar 

  38. T. Paetz. A \( \prod^{1}_{1} \)-analysis of \( {\text{ID}}_{ < \omega } \) using the relation \( \le_{1} \). Thesis (Diplom),University of Munster, 2007.

    Google Scholar 

  39. J. Paris and L. Harrington. A mathematical incompleteness in Peano arithmetic. In J. Barwise, editor, Handbook of Mathematical Logic, pages 1133–1142. North Holland, 1977.

    Google Scholar 

  40. W. Pohlers. Proof theory and ordinal analysis. Archive for Mathematical Logic, 30:311–376, 1991.

    Google Scholar 

  41. W. Pohlers. A short course in ordinal analysis. In P. H. G. Aczel, H. Simmons, and S. S. Wainer, editors, Proof Theory, pages 27–78. Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  42. W. Pohlers. Subsystems of set theory and second order number theory. In S. R. Buss, editor, Handbook of Proof Theory. Elsevier Science B.V., 1998. Chapter IV.

    Google Scholar 

  43. W. Pohlers. Proof Theory. The First Step into Impredicativity. Springer, Berlin, 2009.

    Google Scholar 

  44. W. Pohlers and J.-C. Stegert. Provably recursive functions of reflection. InU. Berger, H. Diener, P. Schuster, and M. Seisenberger, editors, Logic, Construction, Computation, volume 3 of Ontos Mathematical Logic, pages 381–474. De Gruyter, 2012.

    Google Scholar 

  45. M. Rathjen. Ordinal notations based on a weakly Mahlo cardinal. Archive for Mathematical Logic, 29:249–263, 1990.

    Google Scholar 

  46. M. Rathjen. How to develop proof-theoretic ordinal functions on the basis of admissible sets. Mathematical Logic Quarterly, 39:47–54, 1993.

    Google Scholar 

  47. M. Rathjen. Proof theory of reflection. Annals of Pure and Applied Logic, 68:181–224, 1994.

    Google Scholar 

  48. M. Rathjen. The realm of ordinal analysis. In S. B. Cooper and J. K. Truss, editors, Sets and Proofs, volume 258 of London Mathematical Society Lecture Notes, pages 219–279. Cambridge University Press, 1999.

    Google Scholar 

  49. M. Rathjen. An ordinal analysis of parameter free Π1 2-comprehension. Archive for Mathematical Logic, 48:263–362, 2005.

    Google Scholar 

  50. M. Rathjen. The art of ordinal analysis. In Proceedings of the International Congress of Mathematicians, 2006.

    Google Scholar 

  51. M. Rathjen and A. Weiermann. Proof-theoretic investigations on Kruskal’s theorem. Annals of Pure and Applied Logic, 60:49–88, 1993.

    Google Scholar 

  52. B. Russell. The Principles of Mathematics. Merchant Books, 2008.

    Google Scholar 

  53. A. Schluter. Zur Mengenexistenz in formalen Theorien der Mengenlehre. Thesis (Dissertation), University of Munster, 1993.

    Google Scholar 

  54. Schmidt. Well-Partial Orderings and their Maximal Order Types. Habilitationsschrift, Heidelberg, 1979.

    Google Scholar 

  55. K. Schutte. Proof Theory. Springer, Berlin, 1977.

    Google Scholar 

  56. K. Schutte and S. G. Simpson. Ein in der reinen Zahlentheorie unbeweisbarer Satz uber endliche Folgen von naturlichen Zahlen. Archiv für mathematische Logik und Grundlagenforschung, 25:75–89, 1985.

    Google Scholar 

  57. S. G. Simpson. Nonprovability of certain combinatorial properties of finite trees. In L. A. Harrington et al., editors, Harvey Friedman’s Research on the Foundations of Mathematics, pages 87–117. Elsevier Science (North Holland), 1985.

    Google Scholar 

  58. S. G. Simpson. Subsystems of Second Order Arithmetic. Association of Symbolic Logic, Cambridge University Press, second edition, 2009.

    Google Scholar 

  59. O. Veblen. Continuous increasing functions of finite and transfinite ordinals. Transactions of the American Mathematical Society, 9:280–292, 1908.

    Google Scholar 

  60. A.Weiermann. Howto characterize provably total functions by local predicativity. The Journal of Symbolic Logic, 61:52–69, 1996.

    Google Scholar 

  61. A. Weiermann. A proof of strongly uniform termination for Godel’s T by methods from local predicativity. Archive for Mathematical Logic, 36:445–460, 1997.

    Google Scholar 

  62. A. Weiermann. How is it that infinitary methods can be applied to finitary mathematics? Godel’s T: A case study. The Journal of Symbolic Logic, 63:1348–1370, 1998.

    Google Scholar 

  63. A. Weiermann. An application of graphical enumeration to PA. The Journal of Symbolic Logic, 68:5–16, 2003.

    Google Scholar 

  64. A.Weiermann. Phase transitions for Godel incompleteness. Annals of Pure and Applied Logic, 157:281–296, 2009.

    Google Scholar 

  65. A.Weiermann and G.Wilken. Ordinal arithmetic with simultaneously defined Theta-functions. Mathematical Logic Quarterly, 57:116–132, 2011.

    Google Scholar 

  66. A. Weiermann and G. Wilken. Goodstein sequences for prominent ordinals up to the ordinal of Π1 1-CA0. Annals of Pure and Applied Logic, 164:1493–1506, 2013.

    Google Scholar 

  67. G. Wilken. Σ1-Elementarity and Skolem Hull Operators. Thesis (Dissertation), University of Munster, 2004.

    Google Scholar 

  68. 68. G. Wilken. The Bachmann-Howard structure in terms of Σ1-elementarity. Archive for Mathematical Logic, 45:807–829, 2006.

    Google Scholar 

  69. G. Wilken. Assignment of ordinals to elementary patterns of resemblance. The Journal of Symbolic Logic, 72:704–720, 2007.

    Google Scholar 

  70. G. Wilken. Ordinal arithmetic based on Skolem hulling. Annals of Pure and Applied Logic, 145:130–161, 2007.

    Google Scholar 

  71. G. Wilken. \( \sum_{1} \)-elementarity and Skolem hull operators. Annals of Pure and Applied Logic, 145:162–175, 2007.

    Google Scholar 

  72. G. Wilken. Arithmetic Analysis of Elementary Patterns of Order 1 and 2. Habilitationsschrift (kumulativ), University of Munster, 2011.

    Google Scholar 

  73. G. Wilken. Tracking chains revisited. In S.-D. Friedman, D. Raghavan, and Y. Yang, editors, Sets and Computations, volume 33 of Lecture Notes Series, pages 183–220. Institute for Mathematical Sciences, National University of Singapore, World Scientific Publishing Company, 2017.

    Google Scholar 

  74. G. Wilken. Pure patterns of order 2. Annals of Pure and Applied Logic, 169:54–82, 2018.

    Google Scholar 

  75. G. Wilken. Pure \( \sum_{2} \)-elementarity beyond the core. Submitted. Available on http://arxiv.org/abs/1710.01870,20xx.

  76. G. Wilken and A. Weiermann. Derivation lengths classification of Godel’s T extending Howard’s assignment. Logical Methods in Computer Science, 8:1–44, 2012.

    Google Scholar 

  77. R. Zach. Hilbert’s program then and now. Philosophy of Logic, 5:411–447, 2006.

    Google Scholar 

Download references

Acknowledgements

I express my gratitude to Professor Ulf Skoglund for encouragement and support of my research, to ProfessorWolfram Pohlers for helpful comments on an earlier draft, and thank Dr. Steven D. Aird for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Wilken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilken, G. (2020). A Glimpse of \( \sum_{3} \)-elementarity. In: Kahle, R., Rathjen, M. (eds) The Legacy of Kurt Schütte. Springer, Cham. https://doi.org/10.1007/978-3-030-49424-7_21

Download citation

Publish with us

Policies and ethics