Skip to main content

Pattern Classification for Interpreting Sensor Data from a Walking-Speed Robot

  • Chapter
  • First Online:
Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint

Abstract

In order to perform useful tasks for us, robots must have the ability to notice, recognize, and respond to objects and events in their environment. This requires the acquisition and synthesis of information from a variety of sensors. Here we investigate the performance of a number of sensor modalities in an unstructured outdoor environment including the Microsoft Kinect, thermal infrared camera, and coffee can radar. Special attention is given to acoustic echolocation measurements of approaching vehicles, where an acoustic parametric array propagates an audible signal to the oncoming target and the Kinect microphone array records the reflected backscattered signal. Although useful information about the target is hidden inside the noisy time-domain measurements, the dynamic wavelet fingerprint (DWFP) is used to create a time–frequency representation of the data. A small-dimensional feature vector is created for each measurement using an intelligent feature selection process for use in statistical pattern classification routines. Using experimentally measured data from real vehicles at 50 m, this process is able to correctly classify vehicles into one of five classes with 94% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pratkanis AT, Leeper AE, Salisbury JK (2013) Replacing the office intern: an autonomous coffee run with a mobile manipulator. In: IEEE international conference on robotics and automation

    Google Scholar 

  2. Dieckman EA (2013) Use of pattern classification algorithms to interpret passive and active data streams from a walking-speed robotic sensor platform, William & Mary Doctoral Dissertation

    Google Scholar 

  3. Cohen L (1995) Time-frequency analysis. Prentice Hall, New Jersey

    Google Scholar 

  4. Hou J, Hinders M (2002) Dynamic wavelet fingerprint identification of ultrasound signals. Mater Eval 60(9):1089–1093

    Google Scholar 

  5. Hinders M, Hou J, Keon JM (2005) Wavelet processing of high frequency ultrasound echoes from multilayers. In: Review of Progress in Quantitative Nondestructive Evaluation, vol 24, pp 1137–1144

    Google Scholar 

  6. Hou J, Hinders M, Rose S (2005) Ultrasonic periodontal probing based on the dynamic wavelet fingerprint. J Appl Signal Process 7:1137–1146

    MATH  Google Scholar 

  7. Hinders M, Jones R, Leonard KR (2007) Wavelet thumbprint analysis of time domain reflectometry signals for wiring flaw detection. Eng Intell Syst 15(4):65–79

    Google Scholar 

  8. Bertoncini C, Hinders M (2010) Fuzzy classification of roof fall predictors in microseismic monitoring. Measurement 43:1690–1701

    Article  Google Scholar 

  9. Miller CA (2013) Intelligent feature selection techniques for pattern classification of time-domain signals. Doctoral dissertation, The College of William and Mary

    Google Scholar 

  10. Bingham J, Hinders M (2009) Lamb wave characterization of corrosion-thinning in aircraft stringers: experiment and 3d simulation. J Acous Soc Am 126(1):103–113

    Article  Google Scholar 

  11. Bertoncini C, Hinders M (2010) Ultrasonic periodontal probing depth determination via pattern classification. In: Thompson D, Chimenti D (eds) 31st review of progress in quantitative nondestructive evaluation, vol 29. AIP Press, pp 1556–1573

    Google Scholar 

  12. Miller CA, Hinders MK (2014) Classification of flaw severity using pattern recognition for guided wave-based structural health monitoring. Ultrasonics 54:247–258

    Google Scholar 

  13. Bertoncini C (2010) Applications of pattern classification to time-domain signals. Doctoral dissertation, The College of William and Mary

    Google Scholar 

  14. Duin R, Juszczak P, Paclik P, Pekalska E, de Ridder D, Tax D, Verzakov S (2007) Prtools4.1, a Matlab toolbox for pattern recognition. Delft University of Technology, http://prtools.org/

  15. DARPA (2004) DARPA grand challenge, http://archive.darpa.mil/grandchallenge04/

  16. Guizzo E (2011) How Google’s self-driving car works. IEEE spectrum online, http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works

  17. Fisher A (2013) Inside Google’s quest to popularize self-driving cars. Popular science. http://www.popsci.com/cars/article/2013-09/google-self-driving-car

  18. The Economist, “March of the lettuce bot,” The Economist, December 2012. http://economist.com/news/technology-quarterly/21567202-robotics-machine-helps-lettuce-farmers-just-one-several-robots/

  19. Hall DL, Llinas J (1997) An introduction to multisensor data fusion. Proc IEEE 85:6–23

    Google Scholar 

  20. Fehlman WL (2008) Classification of non-heat generating outdoor objects in thermal scenes for autonomous robots. Doctoral dissertation, The College of William and Mary

    Google Scholar 

  21. Fehlman WL, Hinders MK (2010) Passive infrared thermographic imaging for mobile robot object identification. J Field Robot 27(3):281–310

    Google Scholar 

  22. Fehlman WL, Hinders M (2009) Mobile robot navigation with intelligent infrared image interpretation. Springer, London

    Google Scholar 

  23. Open Kinect. http://openkinect.org/

  24. OpenNI. http://openni.org/

  25. Burrus N, RGBDemo. http://labs.manctl.com/rgbdemo/

  26. Microsoft Research, Kinect for windows SDK. http://www.microsoft.com/en-us/kinectforwindows/

  27. Liebe CC, Padgett C, Chapsky J, Wilson D, Brown K, Jerebets S, Goldberg H, Schroeder J (2006) Spacecraft hazard avoidance utilizing structured light. In: IEEE aerospace conference. Big Sky, Montana

    Google Scholar 

  28. Gao W, Hinders MK (2005) Mobile robot sonar interpretation algorithm for distinguishing trees from poles. Robot Autonom Syst 53:89–98

    Article  Google Scholar 

  29. Hinders M, Gao W, Fehlman W (2007) Sonar sensor interpretation and infrared image fusion for mobile robotics. In: Kolski S (ed) Mobile robots: perception and navigation. Pro Literatur Verlag, Germany, pp 69–90

    Google Scholar 

  30. Barshan B, Kuc R (1990) Differentiating sonar reflections from corners and planes by employing an intelligent sensor. IEEE Trans Pattern Anal Mach Intell 12(6):560–569

    Article  Google Scholar 

  31. Kleeman L, Kuc R (1995) Mobile robot sonar for target localization and classification. Int J Robot Res 14(4):295–318

    Article  Google Scholar 

  32. Hernandez A, Urena J, Mazo M, Garcia J, Jimenez A, Jimenez J, Perez M, Alvarez F, DeMarziani C, Derutin J, Serot J (2009) Advanced adaptive sonar for mapping applications. J Intell Robot Syst 55:81–106

    Article  Google Scholar 

  33. Laan Labs, Sonar ruler. https://itunes.apple.com/app/sonar-ruler/id324621243?mt=8. Accessed 5 Aug 2013

  34. Westervelt P (1963) Parametric acoustic array. J Acous Soc Am 35:535–537

    Google Scholar 

  35. Bennett MB, Blackstock D (1975) Parametric array in air. J Acous Soc Am 57:562–568

    Google Scholar 

  36. Yoneyama M, Fujimoto J, Kawamo Y, Sasabe S (1983) The audio spotlight: an application of nonlinear interaction of sound waves to a new type of loudspeaker design. J Acous Soc Am 73:1532–1536

    Google Scholar 

  37. Pompei FJ (1999) The use of airborne ultrasonics for generating audible sound beams. J Audio Eng Soc 47:726–731

    Google Scholar 

  38. Gan W-S, Yang J, Kamakura T (2012) A review of parametric acoustic array in air. Appl Acoust 73:1211–1219

    Article  Google Scholar 

  39. Achanta A, McKenna M, Heyman J (2005) Non-linear acoustic concealed weapons detection. In: Proceedings of the 34th applied imagery and pattern recognition workshop (AIPR05), pp 7–27

    Google Scholar 

  40. Hinders M, Rudd K (2010) Acoustic parametric array for identifying standoff targets. In: Thompson D, Chimenti D (eds) 31st review of progress in quantitative nondestructive evaluation, vol 29. AIP Press, pp 1757–1764

    Google Scholar 

  41. Calicchia P, Simone SD, Marcoberardino LD, Marchal J (2012) Near- to far-field characterization of a parametric loudspeaker and its application in non-destructive detection of detachments in panel paintings. Appl Acoust 73:1296–1302

    Article  Google Scholar 

  42. Ureda MS (2004) Analysis of loudspeaker line arrays. J Audio Eng Soc 52:467–495

    Google Scholar 

  43. Tashev I (2009) Sound capture and processing: practical approaches. Wiley, West Sussex

    Google Scholar 

  44. Tashev I (2011) Audio for kinect: from idea to “Xbox, play!”. http://channel9.msdn.com/events/mix/mix11/RES01

  45. Charvat GL, Williams JH, Fenn AJ, Kogon S, Herd JS (2011) Build a small radar system capable of sensing range, doppler, and synthetic aperture radar imaging. Massachusetts Institute of Technology: MIT OpenCourseWare RES.LL-003

    Google Scholar 

  46. Skolnik M (2008) Radar handbook. McGraw-Hill, New York

    Google Scholar 

  47. Richards M (2005) Fundamentals of radar signal processing. McGraw-Hill, New York

    Google Scholar 

  48. Pozar DM (2011) Microwave engineering. Wiley, Hoboken

    Google Scholar 

  49. Barker JL (1970) Radar, acoustic, and magnetic vehicle detectors. IEEE Trans Vehicul Technol 19:30–43

    Google Scholar 

  50. Mills MK (1970) Future vehicle detection concepts. IEEE Trans Vehicul Technol 19:43–49

    Google Scholar 

  51. Palubinskas G, Runge H (2007) Radar signatures of a passenger car. IEEE Geosci Remote Sens Lett 4:644–648

    Google Scholar 

  52. Lan J, Nahavandi S, Lan T, Yin Y (2005) Recognition of moving ground targets by measuring and processing seismic signal. Measurement 37:189–199

    Article  Google Scholar 

  53. Sun Z, Bebis G, Miller R (2006) On-road vehicle detection: a review. IEEE Trans Pattern Anal Mach Intell 28:694–711

    Google Scholar 

  54. Buch N, Velastin SA, Orwell J (2011) A review of computer vision techniques for the analysis of urban traffic. IEEE Trans Intell Transp Syst 12:920–939

    Google Scholar 

  55. Thomas DW, Wilkins BR (1972) The analysis of vehicle sounds for recognition. Pattern Recognit 4(4):379–389

    Article  Google Scholar 

  56. Nooralahiyan AY, Dougherty M, McKeown D, Kirby HR (1997) A field trial of acoustic signature analysis for vehicle classification. Transp Res C 5(3–4):165–177

    Article  Google Scholar 

  57. Nooralahiyan AY, Kirby HR, McKeown D (1998) Vehicle classification by acoustic signature. Math Comput Model 27(9–11):205–214

    Article  Google Scholar 

  58. Bao M, Zheng C, Li X, Yang J, Tian J (2009) Acoustic vehicle detection based on bispectral entropy. IEEE Signal Process Lett 16:378–381

    Google Scholar 

  59. Guo B, Nixon MS, Damarla T (2012) Improving acoustic vehicle classification by information fusion. Pattern Anal Appl 15:29–43

    Article  MathSciNet  Google Scholar 

  60. Averbuch A, Zheludev VA, Rabin N, Schclar A (2009) Wavelet-based acoustic detection of moving vehicles. Multidim Syst Sign Process 20:55–80

    Article  MathSciNet  Google Scholar 

  61. Averbuch A, Zheludev VA, Neittaanmaki P, Wartiainen P, Huoman K, Janson K (2011) Acoustic detection and classification of river boats. Appl Acoust 72:22–34

    Article  Google Scholar 

  62. Quaranta V, Dimino I (2007) Experimental training and validation of a system for aircraft acoustic signature identification. J Aircraft 44:1196–1204

    Google Scholar 

  63. Wu H, Siegel M, Khosla P (1999) Vehicle sound signature recognition by frequency vector principal component analysis. IEEE Trans Instrum Measur 48:1005–1009

    Google Scholar 

  64. Aljaafreh A, Dong L (2010) An evaluation of feature extraction methods for vehicle classification based on acoustic signals. In: Proceedings of the 2010 international conference on networking, sensing and control (ICNSC), pp 570–575

    Google Scholar 

  65. Lee J, Rakotonirainy A (2011) Acoustic hazard detection for pedestrians with obscured hearing. IEEE Trans Intell Transp Syst 12:1640–1649

    Google Scholar 

  66. Braun ME, Walsh SJ, Horner J, Chuter R (2013) Noise source characteristics in the ISO 362 vehicle pass-by noise test: literature review. Appl Acoust 74:1241–1265

    Article  Google Scholar 

  67. Westervelt P (1957) Scattering of sound by sound. J Acous Soc Am 29:199–203

    Google Scholar 

  68. Westervelt P (1957) Scattering of sound by sound. J Acous Soc Am 29:934–935

    Google Scholar 

  69. Pompei FJ (2002) Sound from ultrasound- The parametric array as an audible sound source. Doctoral dissertation, Massachusetts Institute of Technology

    Google Scholar 

  70. Pierce AD (1989) Acoustics: an introduction to its physical principles and applications. The Acoustical Society of America, New York

    Google Scholar 

  71. Beyer RT (1960) Parameter of nonlinearity in fluids. J Acous Soc Am 32:719–721

    Google Scholar 

  72. Hamilton MF, Blackstock DT (1998) Nonlinear acoustics. Academic, San Diego

    Google Scholar 

  73. Beyer RT (1974) Nonlinear acoustics. Brown University Department of Physics, Providence

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark K. Hinders .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dieckman, E.A., Hinders, M.K. (2020). Pattern Classification for Interpreting Sensor Data from a Walking-Speed Robot. In: Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint. Springer, Cham. https://doi.org/10.1007/978-3-030-49395-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49395-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49394-3

  • Online ISBN: 978-3-030-49395-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics