Skip to main content

Bayesian Anomaly Detection and Classification for Noisy Data

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1181))

Abstract

Statistical uncertainties are rarely incorporated into machine learning algorithms, especially for anomaly detection. Here we present the Bayesian Anomaly Detection And Classification (BADAC) formalism, which provides a unified statistical approach to classification and anomaly detection within a hierarchical Bayesian framework. BADAC deals with uncertainties by marginalising over the unknown, true, value of the data. Using simulated data with Gaussian noise as an example, BADAC is shown to be superior to standard algorithms in both classification and anomaly detection performance in the presence of uncertainties. Additionally, BADAC provides well-calibrated classification probabilities, valuable for use in scientific pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is worth noting that this method of modeling the uncertainty fails when the measurement errors are zero, since the probability of classifying data \(\{d\}\) into a known class vanishes almost everywhere. In this case one could account for intraclass variability by modelling \(\mathbf{F}_{\tau }\) and \(\theta ^i_\tau \) explicitly.

  2. 2.

    Strictly speaking we should write \(n_{\tau }\) since the number of samples in each class will be different but we suppress this to keep the notation relatively simple.

  3. 3.

    https://github.com/ethyroberts/BADAC.

References

  1. Akhtar, N., Mian, A.: IEEE Access 6, 14410 (2018)

    Article  Google Scholar 

  2. Kunz, M., Bassett, B.A., Hlozek, R.: Phys. Rev. D 75, 103508 (2007). https://doi.org/10.1103/PhysRevD.75.103508

    Article  Google Scholar 

  3. Hlozek, R., Kunz, M., Bassett, B., Smith, M., Newling, J., Varughese, M., Kessler, R., Bernstein, J.P., Campbell, H., Dilday, B., et al.: Astrophys. J. 752(2), 79 (2012)

    Article  Google Scholar 

  4. Denison, D.G., Holmes, C.C., Mallick, B.K., Smith, A.F.: Bayesian Methods for Nonlinear Classification and Regression, vol. 386. Wiley, Hoboken (2002)

    Google Scholar 

  5. Domingos, P., Pazzani, M.: Mach. Learn. 29(2–3), 103 (1997)

    Article  Google Scholar 

  6. Cheeseman, P., Stutz, J.: Bayesian Classification (AutoClass): Theory and Results, pp. 153–180. (American Association for Artificial Intelligence, Menlo Park, CA, USA (1996). http://dl.acm.org/citation.cfm?id=257938.257954

  7. Sako, M., Bassett, B., Connolly, B., Dilday, B., Cambell, H., Frieman, J.A., Gladney, L., Kessler, R., Lampeitl, H., Marriner, J., Miquel, R., Nichol, R.C., Schneider, D.P., Smith, M., Sollerman, J.: Astrophys. J. 738, 162 (2011). https://doi.org/10.1088/0004-637X/738/2/162

    Article  Google Scholar 

  8. Ishida, E.E.O., Kornilov, M.V., Malanchev, K.L., Pruzhinskaya, M.V., Volnova, A.A., Korolev, V.S., Mondon, F., Sreejith, S., Malancheva, A., Das, S.: arXiv e-prints arXiv:1909.13260 (2019)

  9. Xu, X., Liu, H., Yao, M.: Complexity 2019, 1 (2019). https://doi.org/10.1155/2019/2686378

    Article  Google Scholar 

  10. Matthews, B.W.: Biochimica et Biophysica Acta (BBA) - Protein Struct. 405(2), 442 (1975). https://doi.org/10.1016/0005-2795(75)90109-9

  11. Liu, F.T., Ting, K.M., Zhou, Z.H.: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 413–422. IEEE Computer Society, Washington, DC (2008). https://doi.org/10.1109/ICDM.2008.17

  12. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: SIGMOD Rec. 29(2), 93 (2000). https://doi.org/10.1145/335191.335388

  13. Breiman, L., Schapire, E.: Mach. Learn. 5–32 (2001). 10.1.1.23.3999

    Google Scholar 

  14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: J. Mach. Learn. Res. 12, 2825 (2011)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Alireza Vafaei Sadr, Martin Kunz and Boris Leistedt for discussions and comments. We acknowledge the financial assistance of the National Research Foundation (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethan Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roberts, E., Bassett, B.A., Lochner, M. (2021). Bayesian Anomaly Detection and Classification for Noisy Data. In: Abraham, A., Siarry, P., Ma, K., Kaklauskas, A. (eds) Intelligent Systems Design and Applications. ISDA 2019. Advances in Intelligent Systems and Computing, vol 1181. Springer, Cham. https://doi.org/10.1007/978-3-030-49342-4_41

Download citation

Publish with us

Policies and ethics