Skip to main content

Synthesis of a Research Program in Precision Poultry Environmental Control Using Biotelemetry

  • Chapter
  • First Online:
Women in Precision Agriculture

Part of the book series: Women in Engineering and Science ((WES))

  • 294 Accesses

Abstract

This chapter highlights significant milestones achieved by the author’s research program towards using biotelemetry to build precision poultry environmental controllers that respond directly and in real time to the needs of the birds. The discussion is presented in three sections: The first section focuses on biotelemetry and its use to monitor poultry deep body temperature (DBT) responses to various environmental conditions, the second section deals with DBT modeling efforts to date, and the third section presents results of the first poultry environmental controller prototype which responds to poultry DBT responses in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aengwanich, W. (2008). Effects of high environmental temperature on the body temperature of Thai indigenous, Thai indigenous crossbred and broiler chickens. Asian Journal of Poultry Science, 48–52.

    Google Scholar 

  • Aerts, J. M., Berckmans, D., & Schurmans, B. (1996). On-line measurement of bioresponses for model-based climate control in animal production units. In Sixth international conference on computers in agriculture (pp. 147–153). St. Joseph: American Society of Agricultural Engineers.

    Google Scholar 

  • Aerts, J. M., Buyse, J., Decuypere, E., & Berckmans, D. (2003). Order identification of the dynamic heat production response of broiler chickens to step changes in temperature and light intensity. Transactions of the ASAE, 46(2), 467–473.

    Google Scholar 

  • Allison, J. M., White, J. M., Worley, J. W., & Kay, F. W. (1991). Algorithms for microcomputer control of the environment of a production broiler house. Transactions of the ASAE, 34(1), 313–320.

    Google Scholar 

  • Baras, E. & Lagardère, J.-P. (1995, June). Fish telemetry in aquaculture: Review and perspectives. Aquaculture International, 3(2), 77–102. ISSN 0967-6120.

    Google Scholar 

  • Barnett, J. L., & Hemsworth, P. H. (1990). The validity of physiological and behavioral measures of animal welfare. Applied Animal Behavior Science, 25, 177–187.

    Google Scholar 

  • Berckmans, D., & Goedseels, V. (1986). Development of new control techniques for the ventilation and heating of livestock buildings. Journal of Agricultural Engineering Research, 33, 1–12.

    Google Scholar 

  • Brown-Brandl, T. M., Beck, M. M., Schulte, D. D., Parkhurst, A. M., & DeShazer, J. A. (1997). Physiological responses of turkeys to temperature and humidity change with age. Journal of Thermal Biology, 22(1):43–52.

    Google Scholar 

  • Brown-Brandl, T. M., Yanagi, Jr., T., Xin, H., Gates, R. S., Bucklin, R. A., & Ross, G. S. (2003, September). A new telemetry system for measuring core body temperature in livestock and poultry. Applied Engineering in Agriculture, 19(5), 583–589. ISSN 0883-8542.

    Google Scholar 

  • Czarick, M., & Lacy, M. P. (1994). Environmental controllers. Poultry Housing Tips, A Cooperative Extension Report. The University of Georgia Extension Service.

    Google Scholar 

  • De Shazer, J. A., & Randall, J. M. (1988). Electronic stockmanship- present and future. In Livestock Environment III, Proceedings of the 3rd Livestock Environmental Symposium, 462–468, Toronto, Canada, 25–27 April. St. Joseph: ASAE.

    Google Scholar 

  • Silva, A. C. S de, Arce, A. I. C., Souto, S., & Costa, E. J. X. (2005, November). A wireless floating base sensor network for physiological responses of livestock. Computers and Electronics in Agriculture, 49(2), 246–254. ISSN 0168-1699.

    Google Scholar 

  • Flood, C. A., Jr., Trumbull, R. D., Koon, J. L., & Brewer, R. N. (1991). Partitioned ventilation control for broilers. Transactions of the ASAE, 34(6), 2541–2549.

    Google Scholar 

  • Geers, R., Berckmans, D., & Huybrechts, W. (1984). Mortality, feed efficiency and carcass value of growing pigs in relation to environmental engineering and control: A case study of Belgian control farming. Livestock Production Science, 11, 235–241.

    Google Scholar 

  • Goedseels, R., Geers, B., Truyen, P., Wouters, K., Goossens, H. V., & Janssens, S. (1992). A data-acquisition system for electronic identification, monitoring, and control of group-housed pigs. Journal of Agricultural Engineering Research, 52, 25–33.

    Google Scholar 

  • Green, A. R. & Xin, H. (2009, December). Effects of stocking density and group size on thermoregulatory responses of laying hens under heat-challenging conditions. Transactions of the ASABE, 52(6), 2033–2038. ISSN 0001-2351.

    Google Scholar 

  • Hahn, G. L. (1997). Dynamic responses of cattle to thermal heat loads. Journal of Animal Science, 77 (suppl_2):10

    Google Scholar 

  • Hamrita, T. K., & Conway, R. H. (2017a). First order dynamics approaching of broiler chicken deep body temperature response to step changes in ambient temperature. International Journal of Agricultural and Biological Engineering, 10, 13–21.

    Google Scholar 

  • Hamrita, T. K., & Conway, R. H. (2017b, March). Effect of air velocity on deep body temperature and weight gain in the broiler chicken. The Journal of Applied Poultry Research, 26(1), 111–121.

    Google Scholar 

  • Hamrita, T. K., & Hoffacker, E. C. (2008). Closed-loop control of poultry deep body temperature using variable air velocity: A feasibility study. Transactions of the ASABE, 51(2), 1–12.

    Google Scholar 

  • Hamrita, T. K., & Mitchell, B. (1999). Poultry housing environment control: A summary of where we are and where we want to go. Transactions of the ASAE, 42(2), 479–483. (Hamrita, and Mitchell, 1999).

    Google Scholar 

  • Hamrita, T. K., & Paulishen, M. (2011). Advances in management of poultry production using biotelemetry. In O. Krejcar (Ed.), Modern telemetry (pp. 165–182). InTech. INVITED. (Hamrita, and Paulishen, 2011).

    Google Scholar 

  • Hamrita, T. K., Hamrita, S. K., Van Wicklen, G., Czarick, M., & Lacy, M. (1997). Use of biotelemetry in measurement of animal responses to environmental stressors (ASAE Paper No. 97-4008). St. Joseph: ASAE.

    Google Scholar 

  • Hamrita, T. K., Wicklen, G. V., Czarick, M., & Lacy, M. (1998). Monitoring poultry deep body temperature using biotelemetry. Journal of Applied Engineering in Agriculture, 14(3), 11–15, , 227–231.

    Google Scholar 

  • Havenstein, G. B., Scheideler, S. E., Ferket, P. R., Qureshi, M. A., Christensen, V., & Donaldson, W. E. (1991). A comparison of the 1957 Athens/Canadian random bred control strain with the 1991 Arbor Acres broiler when fed diets typical of those fed in 1957 and 1991. In Proceedings of the North Carolina State Poultry Supervisors’ Short Course. April 1, 1992.

    Google Scholar 

  • Korthals, R. L., Hahn, G. L., Nienaber, J. A., McDonald, T. P., & Eigenberg, R. A. (1992). Experiences with transponders for monitoring bioenergetic responses (ASAE Paper No. 92-3010). St. Joseph: ASAE.

    Google Scholar 

  • Lacey, B., Hamrita, T. K., Lacy, M. P., & Van Wicklen, G. L. (2000a, June). Assessment of poultry deep body temperature responses to ambient temperature and relative humidity using an on-line telemetry system. Transactions of the ASAE, 43(3) 717–721. ISSN 0001-2351.

    Google Scholar 

  • Lacey, B., Hamrita, T. K., Lacy, M. P., Van Wicklen, G. L., & Czarick, M. (2000b, Spring). Monitoring deep body temperature responses of broilers using biotelemetry. Journal of Applied Poultry Research, 9(1), 6–12. ISSN 1056-6171.

    Google Scholar 

  • Lacey, B., Hamrita, T. K., & McClendon, R. W. (2000c, May). Feasibility of using neural networks for real-time prediction of poultry deep body temperature responses to stressful changes in ambient temperature. Applied Engineering in Agriculture, 16(3), 303–308. ISSN 0883-8542.

    Google Scholar 

  • Lamade, R. M. (1984). Computers in broiler growing operation (ASAE Paper No. 84-4028). St. Joseph: ASAE.

    Google Scholar 

  • Mader, T. L., Holt, S. M., Hahn, G. L.,  Davis, M. S., & Spiers, D. E.  (2002). Feeding strategies for managing heat load in feedlot cattle. Journal of Animal Science, 80, 2373–2382.

    Google Scholar 

  • May, J. D., & Lott, B. D. (1992). Feed and water consumption patterns of broilers at high environmental temperatures. Journal of Poultry Science, 71(2), 331–336.

    Google Scholar 

  • Mitchell, B. W. (1981). Effect of handling and temperature stress on the heartrate, EKG, and body temperature of chickens (ASAE Paper No. 81-4543). St. Joseph: ASAE.

    Google Scholar 

  • Mitchell, B. W. (1984). Interfacing single-board microcomputer controls to conventional controls for an environmental control system. Transactions of the ASAE, 27(5), 1590–1594.

    Google Scholar 

  • Mitchell, B. W. (1986). Microcomputer-based environmental control system for a disease- free poultry house. Transactions of the ASAE, 29(4), 1136–1140.

    Google Scholar 

  • Mitchell, B. W. (1993). Process control system for poultry house environment. Transactions of the ASAE, 36(6), 1881–1886.

    Google Scholar 

  • Moriarty P. (1993,Summer). Foodborne pathogens-new controls from farm to table. Food News for Consumers, (Supplement): 4.

    Google Scholar 

  • Morton, D. B., Hawkins, P., Bevan, R., Heath, K., Kirkwood, J., Pearce, P., Scott, L., Whelan, G., & Webb, A. (2003, October). Refinements in telemetry procedures. Laboratory Animals, 37 (4), 261–300. ISSN 0023-6772.

    Google Scholar 

  • Payne, C. G. (1966). Practical aspects of environmental temperature for laying hens. World’s Poultry Science Journal, 22(2), 126–139.

    Google Scholar 

  • Schurmas, B., Berckmans, D., Decuypere, E., Buyse, J., & Aerts, J. M. (1996). Description of an automated open-circuit indirect multi-calorimetry system suitable for dynamic measurements. Journal of Applied Physiology. (In Review).

    Google Scholar 

  • Shlomo, Y., Goldfeld, S., Plavnik, I., & Hurwitz, S. (1995). Physiological responses of chickens and turkeys to relative humidity during exposure to high ambient temperature. Journal of Thermal Biology, 20(3), 245–253.

    Google Scholar 

  • Simmons, J. D., & Lott, B.D. (1993). Automatic fan control to reduce fan run time during warm weather ventilation. Journal of Applied Poultry Research, 2(4):314–323.

    Google Scholar 

  • Steinbach, J. D. (1971). Relative effects of temperature and humidity on thermal comfort in swine. Nigerian Agricultural Journal, 8, 132–134.

    Google Scholar 

  • Tao, X., & Xin, H. (2003a, April). Acute synergistic effects of air temperature, humidity, and velocity on homeostasis of market-size broilers. Transactions of the ASAE, 46(2), 491–497. ISSN 0001-2351.

    Google Scholar 

  • Tao, X., & Xin, H. (2003b). Temperature-humidity-velocity index for market-size broilers. In Agricultural and biosystems engineering conference proceedings and presentations. Paper 197.

    Google Scholar 

  • Timmons, M. B., & Gates, R. S. (1987). Relative humidity as a ventilation control parameter in broiler housing. Transactions of the ASAE, 30(4), 1111–1115.

    Google Scholar 

  • Timmons, M. B., Gates, R. S., Bottcher, R. W., Carter, T. A., Brake, J., & Wineland, M. J. (1995). Simulation analysis of a new temperature control method for poultry housing. Journal of Agricultural Engineering Research, 62(4), 237–245.

    Google Scholar 

  • Worley, J. W., & Allison, J. M. (1984). Microprocessor control of poultry house environment (ASAE Paper No. 84-3025). St. Joseph: ASAE.

    Google Scholar 

  • Yanagi, Jr., T., Xin, H., & Gates, R. S. (2002, March). A research facility for studying poultry responses to heat stress and its relief. Applied Engineering in Agriculture, 18(2), 255–260. ISSN 0883-8542.

    Google Scholar 

  • Yang, H. H., Bae, Y. H., & Min, W. (2007). Implantable wireless sensor network to monitor the deep body temperature of broilers. In SERA 2007. 5th ACIS International Conference on Software Engineering Research, Management & Applications (pp. 513–517). Busan: IEEE.

    Google Scholar 

  • Zhang, G. (1993). A PC-based multicompartment climatic control system for agricultural buildings. Computers and Electronics in Agriculture, 8, 211–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takoi Khemais Hamrita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamrita, T.K., Ogle, T., Yi, A. (2021). Synthesis of a Research Program in Precision Poultry Environmental Control Using Biotelemetry. In: Hamrita, T. (eds) Women in Precision Agriculture. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-030-49244-1_8

Download citation

Publish with us

Policies and ethics