Skip to main content

Wear

  • Chapter
  • First Online:
Biomedical Materials

Abstract

Wear is a critical issue for prostheses, implants, and other medical devices. Wear may lead to significant loss of material and/or failure of a medical device. For example, wear and wear-related damage commonly cause failure of hip, knee, and other orthopedic prostheses (Wright TM, Goodman SB (eds), Implant wear in total joint replacement: clinical and biologic issues, material and design considerations. American Academy of Orthopaedic Surgeons, Rosemont, 2001). Even a relatively small amount of wear can lead to significant degradation of function for some medical devices. For example, wear debris generated from degradation of a joint prosthesis can result in a biological process known as osteolysis (bone resorption), which can cause loosening of the prosthesis (Zhu YH, Chiu KY and Tang WM, J Orthop Surg 9: 91–99, 2001 and Teoh SH Int J Fatigue 22:825–837, 2000). Wear may also lead to failure of artificial heart valves and other medical devices that enable critical physiologic activities (Kelpetko V, Moritz A, Schurawitzki H, Domanig E and Wolner E, J Thoracic Cardiovascular Surg 97:90-94, 1989). In this chapter, the wear mechanisms that are commonly encountered in biomedical materials and medical devices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright TM, Goodman SB, editors. Implant wear in total joint replacement: clinical and biologic issues, material and design considerations. Rosemont: American Academy of Orthopaedic Surgeons; 2001.

    Google Scholar 

  2. Zhu YH, Chiu KY, Tang WM. Polyethylene wear and osteolysis in total hip arthroplasty. J Orthop Surg. 2001;9:91–9.

    Article  CAS  Google Scholar 

  3. Teoh SH. Fatigue of biomaterials: a review. Int J Fatigue. 2000;22:825–37.

    Article  CAS  Google Scholar 

  4. Kelpetko V, Moritz A, Schurawitzki H, Domanig E, Wolner E. Leaflet fracture in Edwards–Duromedics bileaflet valves. J Thorac Cardiovasc Surg. 1989;97:90–4.

    Article  Google Scholar 

  5. Hutchings IM, editor. Biotribology – a personal view, friction, lubrication and Wear of artificial joints. Bury St. Edmunds: Professional Engineering Publishing Ltd; 2003.

    Google Scholar 

  6. Buckley DH, Jones WR Jr, Sliney HE, Zaretsky EV, Townsend DP, Loewenthal SH. Tribology: the story of lubrication and wear, NASA technical memorandum 101430, 1985.

    Google Scholar 

  7. Behushan B, editor. Modern tribology handbook. Boca Raton: CRC Press; 2001.

    Google Scholar 

  8. Black J. Biological performance of materials: fundamentals of biocompatibility. New York: Marcel Dekker; 1992.

    Google Scholar 

  9. Standard terminology relating to wear and erosion, standard G-40-01, American Society for Testing and Materials, 2001.

    Google Scholar 

  10. Hutchings IM. The challenge of wear. In: Stachowiak GW, editor. Wear-materials, mechanisms and practice: Chichester, England. Hoboken: Wiley; 2005., Chapter 1. p. 1–7.

    Google Scholar 

  11. Bayer RG. Mechanical wear: fundamentals and testing. New York: Marcel Dekker Inc.; 2004.

    Google Scholar 

  12. McKellop HA. The lexicon of polyethylene wear in artificial joints. Biomaterials. 2007;28:5049–57.

    Article  CAS  Google Scholar 

  13. Stachowiak GW, Batchelor AW. Engineering tribology. Amsterdam: Elsevier Butterworth-Heinemann; 2005.

    Google Scholar 

  14. Buckley DH, Miyoshi K. Friction and wear of ceramics. Wear. 1984;100:333–53.

    Article  CAS  Google Scholar 

  15. Archard JF. Contact and rubbing of flat surfaces. J Appl Phys. 1953;24:981–8.

    Article  Google Scholar 

  16. Burwell JT Jr. Survey of possible wear mechanisms. Wear. 1957;1:119–41.

    Article  Google Scholar 

  17. Burwell JT, Strang CD. On the empirical law of adhesive wear. J Appl Phys. 1952;23:18–28.

    Article  Google Scholar 

  18. Rabinowicz E. Adhesive wear. Friction and wear of materials. New York: Wiley; 1965.

    Google Scholar 

  19. Bhushan B, Gupta B. Handbook of tribology. Section 3.3. New York: McGraw-Hill; 1991.

    Google Scholar 

  20. Santavirta S, Konttinen YT, Lappalainen R, Anttila A, Goodman SB, Lind M, Smith L, Takagi M, Gdmez-Barrena E, Nordsletten L, Xu J-W. Materials in total joint replacement. Curr Orthop. 1998;12:51–7.

    Article  Google Scholar 

  21. Kurtz SM, Muratoglu OK, Evans M, Edidin AA. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials. 1999;20:1659–88.

    Article  CAS  Google Scholar 

  22. Li S, Burstein AH. Ultra high molecular weight polyethylene. The material and its use in total hip joint implants. J Bone Joint Surg Am. 1994;76:1080–90.

    Article  CAS  Google Scholar 

  23. Klapperich C, Komvopoulos K, Pruitt L. Tribological properties and microstructure evolution of ultra-high molecular weight polyethylene. Trans ASME. 1999;121:394–402.

    Article  CAS  Google Scholar 

  24. McKellop H, Clarke IC, Markolf KL, Amstutz HC. Wear characteristics of UHMW polyethylene: a method for accurately measuring extremely low wear rates. J Biomed Mater Res. 1978;12:895–927.

    Article  CAS  Google Scholar 

  25. Chiesa R, Tanzi MC, Alfonsi S, Paracchini L, Moscatelli M, Cigada A. Enhanced wear performance of highly crosslinked UHMWPE for artificial joints. J Biomed Mater Res A. 2000;50:381–7.

    Article  CAS  Google Scholar 

  26. Buford A, Goswami T. Review of wear mechanisms in hip implants: paper I – general. Mater Des. 2004;25:385–93.

    Article  CAS  Google Scholar 

  27. Buford A, Goswami T. Review of wear mechanisms in hip implants: paper II – ceramics IG004712. Mater Des. 2004;25:385–93.

    Article  CAS  Google Scholar 

  28. Daly BM, Yin J. Subsurface oxidation of polyethylene. J Biomed Mater Res. 1998;42:523–9.

    Article  CAS  Google Scholar 

  29. Goldman M, Lee M, Gronsky R, Pruitt L. Oxidation of ultrahigh molecular weight polyethylene characterized by Fourier transform infrared spectrometry. J Biomed Mater Res. 1997;37:43–50.

    Article  CAS  Google Scholar 

  30. Lee CS, Yoo SH, Jho JY. Mechanical properties of ultra-high molecular weight polyethylene irradiated with gamma rays. Macromol Res. 2004;12:112–8.

    Article  CAS  Google Scholar 

  31. Rose RM, Goldfarb EV, Ellis E, Crugnola AN. Radiation sterilization and the wear rate of polyethylene. J Orthop Res. 1984;2:393–400.

    Article  CAS  Google Scholar 

  32. Goldman M, Pruitt L. Comparison of the effects of gamma radiation and low temperature hydrogen peroxide gas plasma sterilization on the molecular structure, fatigue resistance, and wear behavior of UHMWPE. J Biomed Mater Res. 1998;40:378–84.

    Article  CAS  Google Scholar 

  33. McKellop H, Shen F-W, Lu B, Campbell P, Salovey R. Effect of sterilization method and other modifications on the wear resistance of acetabular cups made of ultra-high molecular weight polyethylene. J Bone Joint Surg. 2000;82:1708–25.

    Article  CAS  Google Scholar 

  34. Maher SA, Furman BD, Babalola OM, Cottrell JM, Wright TM. Effect of crosslinking, remelting, and aging on UHMWPE damage in a linear experimental wear model. J Orthop Res. 2007;25:849–57.

    Article  CAS  Google Scholar 

  35. Bracco P, Brunella V, Luda MP, Zanetti M, Costa L. Radiation-induced crosslinking of UHMWPE in the presence of co-agents: chemical and mechanical characterisation. Polymer. 2005;46:10648–57.

    Article  CAS  Google Scholar 

  36. Wright TM, Bartel DL. The problem of surface damage in polyethylene total knee components. Clin Orthop. 1986;205:67–74.

    Google Scholar 

  37. Wright TM, Astion DJ, Bansal M, Rimnac CM, Green T, Insall JN, Robinson RP. Failure of carbon fiber-reinforced polyethylene total knee-replacement components. A report of two cases. J Bone Joint Surg A. 1988;70:926–32.

    Article  CAS  Google Scholar 

  38. Wright TM, Rimnac CM, Faris PM, Bansal M. Analysis of surface damage in retrieved carbon fiber-reinforced and plain polyethylene tibial components from posterior stabilized total knee replacements. J Bone Joint Surg A. 1988;70:1312–9.

    Article  CAS  Google Scholar 

  39. Heisel C, Silva M, Dela Rosa MA, Schmalzried TP. Short-term in vivo wear of cross-linked polyethylene. J Bone Joint Surg Am. 2004;86:748–51.

    Article  Google Scholar 

  40. Dorr LD, Wan Z, Shahrdar C, Sirianni L, Boutary M, Yun A. Clinical performance of a durasul highly cross-linked polyethylene acetabular liner for total hip arthroplasty at five years. J Bone Joint Surg Am. 2005;87:1816–21.

    Google Scholar 

  41. Martell JM, Verner JJ, Incavo SJ. Clinical performance of a highly cross-linked polyethylene at two years in total hip arthroplasty: a randomized prospective trial. J Arthroplast. 2003;18:55–9.

    Article  Google Scholar 

  42. Steinberg DR, Steinberg ME. The early history of arthroplasty in the United States. Clin Orthop Relat Res. 2000;374:55–89.

    Article  Google Scholar 

  43. Rieker CB, Köttig P, Schön R, Windler M, Wyss UP. Clinical wear performance of metal-on-metal hip arthroplasties. In: Jacobs JJ, Craig TL, editors. Alternative bearing surfaces in Total joint replacement. West Conshohocken: ASTM International; 1998.

    Google Scholar 

  44. Rahaman MN, Yao A, Bal BS, Garino JP, Ries MD. Ceramics for prosthetic hip and knee joint replacement. J Am Ceram Soc. 2007;90:1965–88.

    Article  CAS  Google Scholar 

  45. Boutin P, Christel P, Dorlot JM, Meunier A, de Roquancourt A, Blanquaert D, Herman S, Sedel L, Witvoet J. The use of dense alumina-alumina ceramic combination in total hip replacement. J Biomed Mater Res. 1988;22:1203–32.

    Article  CAS  Google Scholar 

  46. Hutchings IM, editor. Friction, lubrication and Wear of artificial joints. Bury St. Edmunds: Professional Engineering Publishing Ltd.; 2003.

    Google Scholar 

  47. Sato T, Ohtaki S, Endo T, Shimada M. Science and technology of zirconia. In: Somiya S, Yamamoto N, Yanagida H, editors. Advances in Ceramics. Westerville: American Ceramic Society; 1988.

    Google Scholar 

  48. Affatato S, Frigo M, Toni A. An in vitro investigation of diamond-like carbon as a femoral head coating. J Biomed Mater Res (Appl Biomater). 2000;53:221–6.

    Article  CAS  Google Scholar 

  49. Dearnaley PA. A review of metallic, ceramic and surface treated metals used for bearing surfaces in human joint replacements. Proc Inst Mech Eng. 1999;213-H:107–35.

    Article  Google Scholar 

  50. Enke K, Dimigen H, Hubsch H. Frictional properties of diamond-like carbon layers. Appl Phys Lett. 1980;36:291–2.

    Article  CAS  Google Scholar 

  51. Pharr GM, Callahan DL, McAdams SD, Tsui TY, Anders S, Anders A, Ager JW, Brown IG, Bhatia CS, Silva SRP, Robertson J. Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate pulse-biasing. Appl Phys Lett. 1996;68:779–81.

    Article  CAS  Google Scholar 

  52. Ronkainen H, Varjus S, Koskinen J, Holmberg K. Differentiating the tribological performance of hydrogenated and hydrogen-free DLC coatings. Wear. 2001;249:260–6.

    Article  CAS  Google Scholar 

  53. Holmberg K, Mathews A. Coatings tribology: a concept, critical aspects, and future directions. Thin Solid Films. 1994;253:173–8.

    Article  CAS  Google Scholar 

  54. Collins CB, Davanloo F, Lee TJ, Park H, You JH. Noncrystalline films with the chemistry, bonding, and properties of diamond. J Vac Sci Technol B. 1993;11:1936–41.

    Article  CAS  Google Scholar 

  55. Schneider D, Schwarz T, Scheibe HJ, Panzner M. Non-destructive evaluation of diamond and diamond-like carbon films by laser induced surface acoustic waves. Thin Solid Films. 1997;295:107–16.

    Article  CAS  Google Scholar 

  56. Erdemir A, Bindal C, Pagan J, Wilbur P. Characterization of transfer layers on surfaces sliding against diamond-like hydrocarbon films in dry nitrogen. Surf Coat Technol. 1995;76–77:559–63.

    Article  Google Scholar 

  57. Liu Y, Erdemir A, Meletis EI. An investigation of the relationship between graphitization and frictional behavior of DLC coatings. Surf Coat Technol. 1996;86:564–8.

    Article  Google Scholar 

  58. Lappalainen R, Heinonen H, Anttila A, Santavirta S. Some relevant issues related to the use of amorphous diamond coatings for medical applications. Diamond Relat Mater. 1998;7:482–5.

    Article  CAS  Google Scholar 

  59. Dearnaley G, Mccabe A. Bioapplications of diamond-like carbon coatings. 4th World Biomater Cong, Berlin; 1992.

    Google Scholar 

  60. Sheeja D, Tay BK, Lau SP, Nung LN. Tribological characterization of diamond-like carbon coatings on co-Cr-Mo alloy for orthopaedic applications. Surf Coat Technol. 2001;146:410–6.

    Article  Google Scholar 

  61. Morshed MM, McNamara BP, Cameron DC, Hashmi MSJ. Effect of surface treatment on the adhesion of DLC film on 316L stainless steel. Surf Coat Technol. 2003;163:541–5.

    Article  Google Scholar 

  62. Schwan J, Ulrich S, Theel T, Roth H, Ehrhardt H, Becker P, Silva SRP. Stress-induced formation of high-density amorphous carbon thin films. J Appl Phys. 1997;82:6024–30.

    Article  CAS  Google Scholar 

  63. Morrison ML, Buchanan RA, Liaw PK, Berry CJ, Brigmon R, Riester L, Jin C, Narayan RJ. Electrochemical and antimicrobial properties of diamond-like carbon-metal composite films. Diamond Relat Mater. 2006;15:138–46.

    Article  CAS  Google Scholar 

  64. Bell BF, Scholvin D, Jin C, Narayan RJ. Pulsed laser deposition of hydroxyapatite-diamond-like carbon multilayer films and their adhesion aspects. J Adhes Sci Technol. 2006;18:221–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jin, C., Wei, W. (2021). Wear. In: Narayan, R. (eds) Biomedical Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-49206-9_10

Download citation

Publish with us

Policies and ethics