Skip to main content

Metallic Biomaterials

  • Chapter
  • First Online:
Biomedical Materials

Abstract

Metallic biomaterials continue to be used extensively for the fabrication of surgical implants primarily because of their good load-bearing characteristics and fatigue properties thereby providing acceptable long-term performance when needed. Acceptable chemical compositions for metallic biomaterials, however, are limited due to the necessary requirement of biocompatibility related primarily to material corrosion and wear resistance. However, achieving acceptable properties with biocompatible metallic biomaterials requires their proper processing and use with suitable implant designs. The relative ease of fabrication of both simple and complex metal shapes using well-established and widely available fabrication techniques (e.g., casting, forging, machining) has promoted metal use for making implants used extensively in orthopedics and dentistry in which high mechanical loading is often experienced as well as in the cardiovascular and neurovascular fields where electrical conductivity as well as mechanical reliability to avoid life-threatening failures are important. Metal microstructures and properties are determined by processing procedures used to form the metals, which in turn determine implant performance. A sound understanding of this processing–structure/property–performance interrelationship is key to making safe and effective implantable devices. As discussed in this chapter, the desired favorable properties (e.g. good fracture resistance, electrical conductivity, formability) are related at a basic level to the metallic interatomic bonding and atom arrangements that characterize metals. While the purpose of this chapter is to focus on the important issues pertaining to the processing and performance of metallic biomaterials and to review the metals that are currently used for implant fabrication, a brief discussion of new directions in metallic biomaterial development is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashby MF, Jones DR. Engineering materials 1. An introduction to their properties and applications, and 2. Engineering materials 2. An introduction to microstructures, processing and design. Oxford: Pergamon Press; 1980.

    Google Scholar 

  2. Newey C, Weaver G. Materials principles and practice. London: Butterworth Scientific Ltd; 1990.

    Google Scholar 

  3. Abbaschian R, Abbaschian L, Reed-Hill RE. Dislocations and plastic deformation and elements of grain boundaries, physical metallurgy principles. 4th ed. Stamford: Cengage Learning; 2009. p. 119–93.

    Google Scholar 

  4. Wayman CM, Duerig TW. An introduction to martensite and shape memory. In: Deurig TW, Melton KN, Stockel D, Wayman CM, editors. Engineering aspects of shape memory alloys. London: Butterworth-Heinemann; 1990. p. 3–20.

    Chapter  Google Scholar 

  5. Abbaschian R, Abbaschian L, Reed-Hill RE. Deformation, twinning and martensitic reactions, physical metallurgy principles. 4th ed. Stamford: Cengage Learning; 2009. p. 521–61.

    Google Scholar 

  6. Pilliar RM. Modern metal processing for improved load-bearing surgical implants. Biomaterials. 1991;12:95–100.

    Article  CAS  Google Scholar 

  7. Kilner T, Laanemae WM, Pilliar RM, Weatherly GC, MacEwen SR. Static mechanical properties of cast and sinter-annealed cobalt-chromium surgical implants. J Mater Sci. 1986;21:1349–56.

    Article  CAS  Google Scholar 

  8. Williams DF. Chapter 6: corrosion of orthopedic implants. In: Williams DF, editor. Biocompatibility of orthopedic implants, vol. 1. Boca Raton: CRC Press; 1982.

    Google Scholar 

  9. Davis JR, editor. Handbook of materials for medical devices. Materials Park: ASM International; 2003.

    Google Scholar 

  10. Pilliar RM, Weatherly GC. Developments in implant alloys. CRC Crit Rev Biocompat. 1986;1:371–403.

    CAS  Google Scholar 

  11. Narayan R. Medical applications of stainless-steel. In: Narayan R, editor. ASM handbook, Vol 23, Materials for medical devices. Materials Park: ASM International; 2012. p. 199–210.

    Chapter  Google Scholar 

  12. Sigwart U. Endoluminal stenting. London: WB Saunders Co Ltd; 1996.

    Google Scholar 

  13. Pilliar R, Ramsay SD. Cobalt-base alloys. In: Narayan R, editor. ASM handbook, Vol 23, materials for medical devices. Materials Park: ASM International; 2012. p. 211–22.

    Chapter  Google Scholar 

  14. Tandon R. Ne-shaping of Co-Cr-Mo (F75) via metal injection molding. In: Disegi JA, Kennedy RL, Pilliar R, editors. Cobalt-base alloys for biomedical applications, ASTM STP 1365. West Conshohocken: American Society for Testing and Materials; 1999. p. 3–10.

    Chapter  Google Scholar 

  15. Taylor RNJ, Waterhouse RB. A study of aging behaviour of a cobalt based implant alloy. J Mater Sci. 1983;18:3265.

    Article  CAS  Google Scholar 

  16. Kilner T, Pilliar RM, Weatherly GC, Allibert C. Phase identification and incipient melting in a cast Co-Cr surgical implant alloy. J Biomed Mater Res. 1982;16:63.

    Article  CAS  Google Scholar 

  17. Wang KK. A dispersion strengthened Co-Cr-Mo alloy for medical implants. In: Disegi JA, Kennedy RL, Pilliar R, editors. Cobalt-base alloys for biomedical applications, ASTM STP 1365. West Conshohocken: American Society for Testing and Materials; 1999. p. 89–97.

    Chapter  Google Scholar 

  18. Berlin RM, Gustavson LJ, Wang KK. Influence of post processing on the mechanical properties of investment cast and wrought Co-Cr-Mo alloys. In: Disegi JA, Kennedy RL, Pilliar R, editors. Cobalt-base alloys for biomedical applications, ASTM STP 1365. West Conshohocken: American Society for Testing and Materials; 1999. p. 62–70.

    Chapter  Google Scholar 

  19. Mishra AK, Hamby MA, Kaiser WB. Metallurgy, microstructure, chemistry and mechanical properties of a new grade of cobalt-chromium alloy before and after porous-coating. In: Disegi JA, Kennedy RL, Pilliar R, editors. Cobalt-base alloys for biomedical applications, ASTM STP 1365. West Conshohocken: American Society for Testing and Materials; 1999. p. 71–88.

    Chapter  Google Scholar 

  20. Pilliar RM. Powder metal-made orthopaedic implants with porous surfaces for fixation by tissue ingrowth. Clin Orthop Relat Res. 1983;176:42–51.

    Article  CAS  Google Scholar 

  21. Pilliar RM. Porous-surfaced metallic implants for orthopedic applications. J Biomed Mater Res. 1987;A1:1–33.

    Google Scholar 

  22. Lampman S. Titanium and its alloys for biomedical implants. In: Narayan R, editor. ASM handbook, Vol 23, materials for medical devices. Materials Park: ASM International; 2012. p. 223–36.

    Chapter  Google Scholar 

  23. Ankem S, Seagle SR. Heat treatment of metastable beta titanium alloys. In: Rosenberg H, Boyer RR, editors. Beta titanium alloys in the 1980’s. New York: AIME; 1984. p. 107–26.

    Google Scholar 

  24. Long M, Rack HJ. Titanium alloys in total joint replacement – a materials science perspective. Biomaterials. 1998;19:1621–39.

    Article  CAS  Google Scholar 

  25. Mishnaevsky L Jr, et al. Nanostructured titanium-based materials for medical implants: modeling and development. Mater Sci Eng. 2014;R81:1–19.

    Article  Google Scholar 

  26. Yue S, Pilliar RM, Weatherly GC. The fatigue strength of porous-coated Ti-6Al-4V implant alloy. J Biomed Mater Res. 1984;18:1043.

    Article  CAS  Google Scholar 

  27. Bania PJ. Beta titanium alloys and their role in the titanium industry. In: Eylon D, Boyer RR, Koss DA, editors. Beta titanium alloys in the 1990’s. Warrendale: The Minerals, Metals & Materials Society; 1993. p. 3–14.

    Google Scholar 

  28. Mishra AK, Davidson JA, Poggie RA, Kovacs P, Fitzgerald TJ. Mechanical and tribological properties and biocompatibility of diffusion hardened Ti-13Nb-13Zr – a new titanium alloy for surgical implants. In: Medical applications of titanium and its alloys: the material and biological issues, ASTM STP1272. West Conshohocken: ASTM International; 1996. p. 96–113.

    Google Scholar 

  29. Benezra V, Mangin S, Treska M, Spector M, Hunter G, Hobbs LW. Microstructural investigation of the oxide scale of Zr-2.5Nb and its interface with the alloy substrate, in biomedical materials-drug delivery. Implants and tissue engineering. Mater Res Soc Symp Proc. 1999;550:337–42.

    Article  CAS  Google Scholar 

  30. Garrett S, Jacobs N, Yates P, Smith A, Wood D. Differences in metal ion release following cobalt-chromium and oxidized zirconium total knee arthroplasty. Acta Orthop Belg. 2010;76(4):513–20.

    Google Scholar 

  31. Lewis PM, Moore CA, Olsen M, Schemitsch EH, Waddell JP. Comparison of mid-term clinical outcomes after primary total hip arthroplasty with Oxinium vs cobalt chrome femoral heads. Orthopedics. Dec 2008;31(12 Suppl 2):371–83.

    Google Scholar 

  32. Haasters J, v Salis-Salio G, Bensmann G. The use of Ni-Ti as an implant in orthopaedics. In: Deurig TW, Melton KN, Stockel D, Wayman CM, editors. Engineering aspects of shape memory alloys. London: Butterworth-Heinemann; 1990. p. 426–44.

    Chapter  Google Scholar 

  33. Wever DJ, Veldhuizen AG, Sanders MM, Schakenrad JM, van Horn JR. Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials. 1997;18:1115–20.

    Article  CAS  Google Scholar 

  34. Kapanen A, Ryhanen J, Danilov A, Tuukkanen J. Effect of nickel-titanium shape memory alloy on bone formation. Biomaterials. 2001;22:2475–80.

    Article  CAS  Google Scholar 

  35. Firstov GS, Vitchev RG, Kumar H, Blanpain B, Van Humbeeck J. Surface oxidation of NiTi shape memory alloy. Biomaterials. 2002;23:4863–71.

    Article  CAS  Google Scholar 

  36. Cisse O, Savadogo O, Wu M, Yahia LH. Effect of surface treatment of NiTi alloy on its corrosion behavior in Hanks’ solution. J Biomed Mater Res. 2002;61:339–45.

    Article  CAS  Google Scholar 

  37. Assad M, Chernyshov AV, Jarzem P, Leroux MA, Coillard C, Charette S, Rivard C-H. Porous titanium-nickel for intervertebral fusion in a sheep model: part 2. Surface analysis and nickel release assessment. J Biomed Mater Res B Appl Biomater. 2003;64B:121–9.

    Article  CAS  Google Scholar 

  38. Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie R. Structure, metallurgy and mechanical properties of a porous tantalum foam. J Biomed Mater Res Appl Biomater. 2001;58:180–7.

    Article  CAS  Google Scholar 

  39. Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg. 1999;81-B:907–14.

    Article  Google Scholar 

  40. O’Brien BJ, Stinson JS, Larsen SR, Epihimer MJ, Carroll WM. A platinum-chromium steel for cardiovascular stents. Biomaterials. 2010;31(14):3755–61.

    Article  CAS  Google Scholar 

  41. Chen Y, Xu Z, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10:4561–73.

    Article  CAS  Google Scholar 

  42. Kusmerczyk K, Basista M. Recent advances on magnesium alloys and magnesium -calcium phosphate composites as biodegradable implant materials. J Biomater Appl. 2017;31(6):878–900.

    Article  CAS  Google Scholar 

  43. Yoshimoto S, Yamasaki M, Kawamura Y. Microstructural and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure. Mater Trans. 2006;47:959–65.

    Article  CAS  Google Scholar 

  44. Erbel R, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicenter trial. Lancet. 2007;369:1869–75.

    Article  CAS  Google Scholar 

  45. Anusavice KJ. Chapter 17: dental amalgam: structures and properties. In: Phillip’s science of dental materials. 10th ed. London: W. B. Saunders; 1996.

    Google Scholar 

  46. Poinern GEJ, Brundavanam S, Fawcett D. Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopedic implant. Am J Biomed Eng. 2012;2(6):218–40.

    Article  Google Scholar 

  47. Mishnaevsky L Jr, et al. Nanostructured titanium-based materials for medical implants: modeling and development. Mater Sci Eng R. 2014;81:1–19.

    Article  Google Scholar 

  48. Yang L. Nanotechnology-enhanced metals and alloys for orthopedic implants. In: Nanotechnology-enhanced orthopedic materials, Woodhead Publishing series in biomaterials. Kent: Elsevier; 2015. p. 27–47.

    Chapter  Google Scholar 

  49. Padilla HA II, Boyce BL. A review of fatigue behavior in nanocrystalline metals. Exp Mech. 2010;50(1):5–23.

    Article  CAS  Google Scholar 

  50. Baker SP. Plastic deformation and strength of materials in small dimensions. Mater Sci Eng. 2001;319–321:16–23.

    Article  Google Scholar 

  51. Boyce BL, Padilla HA II. Anomalous fatigue behavior and fatigue-induced grain growth in nanocrystalline nickel alloys. Metall Mater Trans A. 2011;42A:1793.

    Article  CAS  Google Scholar 

  52. Cheng D, Tellkamp VL, Lavernia CJ, Lavernia EJ. Cprrosion properties of nanocrystalline Co-Cr coatings. Ann Biomed Eng. 2001;29:803–9.

    Article  CAS  Google Scholar 

  53. Edwards P, Ramulu M. Fatigue performance evaluation of selective laser meltedTi-6Al-4V. Mater Sci Eng A. 2014;598:327–37.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Pilliar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pilliar, R.M. (2021). Metallic Biomaterials. In: Narayan, R. (eds) Biomedical Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-49206-9_1

Download citation

Publish with us

Policies and ethics