Skip to main content

Ototoxicity After Childhood Cancer

  • Chapter
  • First Online:
Late Treatment Effects and Cancer Survivor Care in the Young

Abstract

Ototoxicity (i.e., toxic damage to the ear) is a side effect of many drugs that are used in cancer treatment, including anticancer drugs and co-medication such as aminoglycoside antibiotics, glycopeptide antibiotics, macrolides, nonsteroidal anti-inflammatory drugs, loop diuretics, ototopical medication, and cranial irradiation, among others. Aminoglycosides and platinum-based chemotherapy agents are of greatest concern as they often lead to permanent ototoxicity. Ototoxic drugs can have severe short- and long-term effects on patients’ hearing and balance systems, such as impaired speech perception, which impedes language development, psychosocial development, educational attainment, employment prospects, and quality of life. Oncology professionals must balance the benefits of any planned drug treatment against these potential effects. Susceptibility to ototoxic effects is defined by genetic and non-genetic risk factors, such as age or other concomitant ototoxic treatment. Various subjective and objective audiological tests can be used to identify ototoxicity in individual patients, such as pure-tone or play audiometry alongside otoacoustic emissions (OAEs) and auditory brainstem response (ABR) testing. The pros and cons of diagnostic audiological practice, treatment options, and current research into otoprotective medication are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grewal S, et al. Auditory late effects of childhood cancer therapy: a report from the Children’s Oncology Group. Pediatrics. 2010;125(4):e938–50.

    Article  Google Scholar 

  2. Gurney JG, et al. Hearing loss, quality of life, and academic problems in long-term neuroblastoma survivors: a report from the Children’s Oncology Group. Pediatrics. 2007;120(5):e1229–36.

    Article  Google Scholar 

  3. Tharpe AM. Unilateral and mild bilateral hearing loss in children: past and current perspectives. Trends Amplif. 2008;12(1):7–15.

    Article  Google Scholar 

  4. Einar-Jon E, et al. Hearing impairment after platinum-based chemotherapy in childhood. Pediatr Blood Cancer. 2011;56(4):631–7.

    Article  Google Scholar 

  5. Sanchez-Sellero I, Soto-Varela A. Instability Due to Drug-Induced Vestibulotoxicity. J Int Adv Otol. 2016;12(2):202–7.

    Article  Google Scholar 

  6. Van Hecke R, et al. Systemic aminoglycosides-induced vestibulotoxicity in humans. Ear Hear. 2017;38:653–62.

    Article  Google Scholar 

  7. Landier W. Ototoxicity and cancer therapy. Cancer. 2016;122(11):1647–58.

    Article  Google Scholar 

  8. van As JW, et al. Platinum-induced hearing loss after treatment for childhood cancer. Cochrane Database Syst Rev. 2016b;8:CD010181.

    Google Scholar 

  9. Byrne J, et al. PanCareLIFE: The scientific basis for a European project to improve long-term care regarding fertility, ototoxicity, and health-related quality of life after cancer occurring among children and adolescents. Eur J Cancer. 2018;103:227–37.

    Article  Google Scholar 

  10. Clemens E, et al. Genetic determinants of ototoxicity during and after childhood cancer treatment: design of PanCareLIFE studies. JMIR Res Protoc. 2019;8:e11868.

    Article  Google Scholar 

  11. Clemens E, et al. Recommendations for ototoxicity surveillance for childhood, adolescent, and young adult cancer survivors: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCare Consortium. Lancet. 2019;20(1):E29–41. https://doi.org/10.1016/S1470-2045(18)30858-1.

    Article  Google Scholar 

  12. Clemens E, et al. The influence of genetic variation on late toxicities in childhood cancer survivors: a review. Clin Rev Oncol. 2018;126:154–67.

    CAS  Google Scholar 

  13. Northern JL, Downs MP, editors. Hearing in children. 6th ed. Pennsylvania: Lippincott Williams &Wilkins; 2014.

    Google Scholar 

  14. Ott I, Gust R. Medizinische Chemie der Platinkomplexe: Besonderheiten anorganischer Zytostatika. Pharm Unserer Zeit. 2006;35(2):124–33.

    Article  CAS  Google Scholar 

  15. Hyppolito MA, et al. Amifostine otoprotection to cisplatin ototoxicity: a guinea pig study using otoacoustic emission distortion products (DPOEA) and scanning electron microscopy. Braz J Otorhinolaryngol. 2005;71(3):268–73, https://www.sciencedirect.com/science/article/pii/S1808869415313227, https://creativecommons.org/licenses/by/4.0/.

    Article  Google Scholar 

  16. Breglio AM, et al. Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun. 2017;8(1):1654.

    Article  CAS  Google Scholar 

  17. Rybak LP. Mechanisms of cisplatin ototoxicity and progress in otoprotection. Curr Opin Otolaryngol Head Neck Surg. 2007;15(5):364–9.

    Article  Google Scholar 

  18. Paken J, et al. Cisplatin-associated ototoxicity: a review for the health professional. J Toxicol. 2016;2016:1809394.

    Article  CAS  Google Scholar 

  19. Bertolini P, et al. Platinum compound-related ototoxicity in children: long-term follow-up reveals continuous worsening of hearing loss. J Pediatr Hematol Oncol. 2004;26(10):649–55.

    Article  Google Scholar 

  20. Brock PR, et al. Cisplatin ototoxicity in children: a practical grading system. Med Pediatr Oncol. 1991;19(4):295–300.

    Article  CAS  Google Scholar 

  21. Knight KR, et al. Early changes in auditory function as a result of platinum chemotherapy: use of extended high-frequency audiometry and evoked distortion product otoacoustic emissions. J Clin Oncol. 2007;25(10):1190–5.

    Article  CAS  Google Scholar 

  22. Kushner BH, et al. Ototoxicity from high-dose use of platinum compounds in patients with neuroblastoma. Cancer. 2006;107(2):417–22.

    Article  CAS  Google Scholar 

  23. Langer T, et al. Late effects surveillance system for sarcoma patients. Pediatr Blood Cancer. 2004;42(4):373–9.

    Article  Google Scholar 

  24. Li Y, et al. Predicting cisplatin ototoxicity in children: the influence of age and the cumulative dose. Eur J Cancer (Oxford, England: 1990). 2004;40(16):2445–51.

    Article  CAS  Google Scholar 

  25. Simon T, et al. The incidence of hearing impairment after successful treatment of neuroblastoma. Klin Padiatr. 2002;214(4):149–52.

    Article  CAS  Google Scholar 

  26. Stohr W, et al. Cisplatin-induced ototoxicity in osteosarcoma patients: a report from the late effects surveillance system. Cancer Invest. 2005;23(3):201–7.

    Article  CAS  Google Scholar 

  27. Yancey A, et al. Risk factors for cisplatin-associated ototoxicity in pediatric oncology patients. Pediatr Blood Cancer. 2012;59(1):144–8.

    Article  Google Scholar 

  28. Langer T, et al. Understanding platinum-induced ototoxicity. Trends Pharmacol Sci. 2013;34(8):458–69.

    Article  CAS  Google Scholar 

  29. Punnett A, et al. Ototoxicity following pediatric hematopoietic stem cell transplantation: a prospective cohort study. Pediatr Blood Cancer. 2004;42(7):598–603.

    Article  Google Scholar 

  30. Schacht J, et al. Cisplatin and aminoglycoside antibiotics: hearing loss and its prevention. Anat Rec (Hoboken). 2012;295(11):1837–50.

    Article  CAS  Google Scholar 

  31. Skinner R. Preventing platinum-induced ototoxicity in children-is there a potential role for sodium thiosulfate? Pediatr Blood Cancer. 2006;47(2):120–2.

    Article  Google Scholar 

  32. Lanvers-Kaminsky C, et al. Continuous or repeated prolonged cisplatin infusions in children: A prospective study on ototoxicity, platinum concentrations, and standard serum parameters. Pediatr Blood Cancer. 2006;47(2):183–93.

    Article  CAS  Google Scholar 

  33. Al-Khatib T, et al. Cisplatinum ototoxicity in children, long-term follow up. Int J Pediatr Otorhinolaryngol. 2010;74(8):913–9.

    Article  Google Scholar 

  34. Knight KR, et al. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol. 2005;23(34):8588–96.

    Article  Google Scholar 

  35. Weiss A, et al. Long-term auditory complications after childhood cancer: a report from the swiss childhood cancer survivor study. Pediatr Blood Cancer. 2017;64(2):364–73.

    Article  CAS  Google Scholar 

  36. Laverdiere C, et al. Long-term complications in survivors of advanced stage neuroblastoma. Pediatr Blood Cancer. 2005;45(3):324–32.

    Article  Google Scholar 

  37. Kawakita M, et al. Treatment of advanced testicular cancer and toxicity of chemotherapy, Hinyokika kiyo. Acta Urol Jap. 1999;45(11):783–6.

    CAS  Google Scholar 

  38. Vermorken JB, et al. Ototoxicity of cis-diamminedichloroplatinum (II): influence of dose, schedule and mode of administration. Eur J Cancer Clin Oncol. 1983;19(1):53–8.

    Article  CAS  Google Scholar 

  39. Zhou Y, et al. Functional and structural changes in the chinchilla cochlea and vestibular system following round window application of carboplatin. Audiol Med. 2009;7(4):189–99.

    Article  Google Scholar 

  40. Brock PR, et al. Platinum-induced ototoxicity in children: a consensus review on mechanisms, predisposition, and protection, including a new International Society of Pediatric Oncology Boston ototoxicity scale. J Clin Oncol. 2012;30(19):2408–17.

    Article  CAS  Google Scholar 

  41. Jehanne M, et al. Analysis of ototoxicity in young children receiving carboplatin in the context of conservative management of unilateral or bilateral retinoblastoma. Pediatr Blood Cancer. 2009;52(5):637–43.

    Article  Google Scholar 

  42. Liem RI, et al. Misinterpretation of a Calvert-derived formula leading to carboplatin overdose in two children. J Pediatr Hematol Oncol. 2003;25(10):818–21.

    Article  Google Scholar 

  43. Qaddoumi I, et al. Carboplatin-associated ototoxicity in children with retinoblastoma. JCO. 2012;30(10):1034–41.

    Article  CAS  Google Scholar 

  44. Oh SY, et al. Ototoxicity associated with oxaliplatin in a patient with pancreatic cancer. J Pancreas. 2013;14(6):676–9.

    Google Scholar 

  45. Lanvers-Kaminsky C, et al. Drug-induced ototoxicity: mechanisms, pharmacogenetics, and protective strategies. Clin Pharmacol Ther. 2017;101(4):491–500.

    Article  CAS  Google Scholar 

  46. Beck JD, et al. After-care of children and young adults surviving cancer. Initial recommendations by the late sequelae study group. Klin Padiatr. 1995;207(4):186–92.

    Article  CAS  Google Scholar 

  47. Landier W, et al. Ototoxicity in children with high-risk neuroblastoma: prevalence, risk factors, and concordance of grading scales--a report from the Children’s Oncology Group. J Clin Oncol. 2014;32(6):527–34.

    Article  Google Scholar 

  48. Lambert MP, et al. A retrospective review of hearing in children with retinoblastoma treated with carboplatin-based chemotherapy. Pediatr Blood Cancer. 2008;50(2):223–6.

    Article  Google Scholar 

  49. Shields CL, et al. Chemoreduction plus focal therapy for retinoblastoma: factors predictive of need for treatment with external beam radiotherapy or enucleation. Am J Ophthalmol. 2002;133(5):657–64.

    Article  Google Scholar 

  50. Kennedy C, et al. Quality of survival and growth in children and young adults in the PNET4 European controlled trial of hyperfractionated versus conventional radiation therapy for standard-risk medulloblastoma. Int J Radiat Oncol Biol Phys. 2014;88(2):292–300.

    Article  Google Scholar 

  51. Perilongo G, et al. Cisplatin versus cisplatin plus doxorubicin for standard-risk hepatoblastoma. N Engl J Med. 2009;361(17):1662–70.

    Article  CAS  Google Scholar 

  52. Mandell LR, et al. There is no role for hyperfractionated radiotherapy in the management of children with newly diagnosed diffuse intrinsic brainstem tumors: results of a Pediatric Oncology Group phase III trial comparing conventional vs. hyperfractionated radiotherapy. Int J Radiat Oncol Biol Phys. 1999;43(5):959–64.

    Article  CAS  Google Scholar 

  53. Cushing B, et al. Randomized comparison of combination chemotherapy with etoposide, bleomycin, and either high-dose or standard-dose cisplatin in children and adolescents with high-risk malignant germ cell tumors: a pediatric intergroup study—Pediatric Oncology Group 9049 and Children’s Cancer Group 8882. J Clin Oncol. 2004;22(13):2691–700.

    Article  CAS  Google Scholar 

  54. Lewis MJ, et al. Ototoxicity in children treated for osteosarcoma. Pediatr Blood Cancer. 2009;52(3):387–91.

    Article  Google Scholar 

  55. Nitz A, et al. Prospective evaluation of cisplatin- and carboplatin-mediated ototoxicity in paediatric and adult soft tissue and osteosarcoma patients. Oncol Lett. 2013;5(1):311–5.

    Article  CAS  Google Scholar 

  56. Dille MF, et al. Tinnitus onset rates from chemotherapeutic agents and ototoxic antibiotics: results of a large prospective study. J Am Acad Audiol. 2010;21(6):409–17.

    Article  Google Scholar 

  57. Teichroew JK. Chronic diseases: an encyclopedia of causes, effects, and treatments. Greenwood: Santa Barbara; 2017.

    Google Scholar 

  58. Wallhäusser-Franke E, et al. Transition from acute to chronic tinnitus: predictors for the development of chronic distressing tinnitus. Front Neurol. 2017;8:605. https://doi.org/10.3389/fneur.2017.00605.

    Article  Google Scholar 

  59. Chari D, Limb C. Tinnitus. Med Clin North Am. 2018;102(6):1081–93.

    Article  Google Scholar 

  60. Langguth B, et al. Tinnitus: causes and clinical management. Lancet Neurol. 2013;12(9):920–30.

    Article  Google Scholar 

  61. Goldstein B, Shulman A. Central auditory speech test findings in individuals with subjective idiopathic tinnitus. Int Tinnitus J. 1999;5(1):16–9.

    CAS  Google Scholar 

  62. Yu-Guang N, et al. Tinnitus and hyperacusis in children: clinic reports and basic research. J Otolaryngol. 2012;7(1):15–8.

    Google Scholar 

  63. Han BI, et al. Tinnitus: characteristics, causes, mechanisms, and treatments. J Clin Neurol. 2009;5(1):11–9.

    Article  Google Scholar 

  64. Aazh H, Moore BCJ. Thoughts about suicide and self-harm in patients with tinnitus and hyperacusis. J Am Acad Audiol. 2018;29(3):255–61.

    Article  Google Scholar 

  65. Whelan K, et al. Auditory complications in childhood cancer survivors: a report from the childhood cancer survivor study. Pediatr Blood Cancer. 2011;57(1):126–34.

    Article  Google Scholar 

  66. Goldsby RE, et al. Late-occurring neurologic sequelae in adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2010;28(2):324–31.

    Article  Google Scholar 

  67. Wells EM, et al. Longitudinal assessment of late-onset neurologic conditions in survivors of childhood central nervous system tumors: a Childhood Cancer Survivor Study report. Neuro Oncol. 2018;20(1):132–42.

    Article  Google Scholar 

  68. Packer RJ, et al. Long-term neurologic and neurosensory sequelae in adult survivors of a childhood brain tumor: childhood cancer survivor study. J Clin Oncol. 2003;21(17):3255–61.

    Article  Google Scholar 

  69. Punyko JA, et al. Long-term medical effects of childhood and adolescent rhabdomyosarcoma: a report from the childhood cancer survivor study. Pediatr Blood Cancer. 2005;44(7):643–53.

    Article  Google Scholar 

  70. King AA, et al. Long-term neurologic health and psychosocial function of adult survivors of childhood medulloblastoma/PNET: a report from the Childhood Cancer Survivor Study. Neuro Oncol. 2017;19(5):689–98.

    Google Scholar 

  71. Ozono S, et al. General health status and late effects among adolescent and young adult survivors of childhood cancer in Japan. Jap J Clin Oncol. 2014;44(10):932–40.

    Article  Google Scholar 

  72. Kalafatcilar AI, et al. Assessment of neuropsychological late effects in survivors of childhood leukemia. Pediatr Hematol Oncol. 2014;3(2):181–93.

    Article  Google Scholar 

  73. Meijer AJM, et al. Tinnitus during and after childhood cancer: a systematic review. Crit Rev Oncol Hematol. 2019;135:1–7. https://doi.org/10.1016/j.critrevonc.2019.01.004. Epub 2019 Jan 11.

    Article  Google Scholar 

  74. Ralli M, et al. Work-related noise exposure in a cohort of patients with chronic tinnitus: analysis of demographic and audiological characteristics. Int J Environ Res Public Health. 2017;14(9):E1035.

    Article  Google Scholar 

  75. Seydel C, et al. Gender and chronic tinnitus: differences in tinnitus-related distress depend on age and duration of tinnitus. Ear Hear. 2013;34(5):661–72.

    Article  Google Scholar 

  76. Sliwinska-Kowalska M, Zaborowski K. WHO environmental noise guidelines for the European region: a systematic review on environmental noise and permanent hearing loss and tinnitus. Int J Environ Res Public Health. 2017;14(10):E1139.

    Article  Google Scholar 

  77. Adjamian P, et al. Neuroanatomical abnormalities in chronic tinnitus in the human brain. Neurosci Biobehav Rev. 2014;45(100):119–33. https://doi.org/10.1016/j.neubiorev.2014.05.013. Epub 2014 Jun 2

    Article  Google Scholar 

  78. Henry JA, et al. Underlying mechanisms of tinnitus: review and clinical implications. J Am Acad Audiol. 2014;25(1):5–126.

    Article  Google Scholar 

  79. Langguth B, et al. Therapeutic approaches to the treatment of tinnitus. Annu Rev Pharmacol Toxicol. 2019;59(3):1–3.23.

    Google Scholar 

  80. Kaltenbach JA, et al. Cisplatin-induced hyperactivity in the dorsal cochlear nucleus and its relation to outer hair cell loss: relevance to tinnitus. J Neurophysiol. 2002;88(2):699–714.

    Article  CAS  Google Scholar 

  81. Melamed SB, et al. Cisplatin-induced increases in spontaneous neural activity in the dorsal cochlear nucleus and associated outer hair cell loss. Audiology. 2000;39:24–9.

    Article  CAS  Google Scholar 

  82. Walker GV, et al. Radiation-induced middle ear and mastoid opacification in skull base tumors treated with radiotherapy. Int J Radiat Oncol Biol Phys. 2011;81(5):e819–23.

    Article  Google Scholar 

  83. Bass JK, et al. Hearing loss in patients who received cranial radiation therapy for childhood cancer. J Clin Oncol. 2016;34(11):1248–55.

    Article  CAS  Google Scholar 

  84. Bhandare N, et al. Radiation therapy and hearing loss. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S50–7.

    Article  Google Scholar 

  85. Young YH, Lu YC. Mechanism of hearing loss in irradiated ears: a long-term longitudinal study. Ann Otol Rhinol Laryngol. 2001;110(10):904–6.

    Article  CAS  Google Scholar 

  86. Hua C, et al. Hearing loss after radiotherapy for pediatric brain tumors: effect of cochlear dose. Int J Radiat Oncol Biol Phys. 2008;72(3):892–9.

    Article  Google Scholar 

  87. Merchant TE, et al. Early neuro-otologic effects of three-dimensional irradiation in children with primary brain tumors. Int J Radiat Oncol Biol Phys. 2004;58(4):1194–207.

    Article  Google Scholar 

  88. Rivelli TG, et al. Cisplatin based chemoradiation late toxicities in head and neck squamous cell carcinoma patients. Discov Med. 2015;20(108):57–66.

    Google Scholar 

  89. Schoot RA, et al. Hearing loss in survivors of childhood head and neck rhabdomyosarcoma: a long-term follow-up study. Clin Otolaryngol. 2016;41(3):276–83.

    Article  CAS  Google Scholar 

  90. Scobioala S, et al. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing: retrospective analysis of 29 medulloblastoma patients. Strahlenther Onkol. 2017;193:910–20.

    Article  Google Scholar 

  91. Warrier R, et al. Cisplatin and cranial irradiation-related hearing loss in children. Ochsner J. 2012;12(3):191–6.

    Google Scholar 

  92. Williams GB, et al. Hearing loss as a late complication of radiotherapy in children with brain tumors. Ann Otol Rhinol Laryngol. 2005;114(4):328–31.

    Article  Google Scholar 

  93. Kortmann RD, et al. Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of the German prospective randomized trial HIT ‘91. Int J Radiat Oncol Biol Phys. 2000;46(2):269–79.

    Article  CAS  Google Scholar 

  94. Lee TF, et al. Normal tissue complication probability modeling for cochlea constraints to avoid causing tinnitus after head-and-neck intensity-modulated radiation therapy. Radiat Oncol. 2015;10:194. https://doi.org/10.1186/s13014-015-0501-x.

    Article  CAS  Google Scholar 

  95. Durante-Mangoni E, et al. Do we still need the aminoglycosides? Int J Antimicrob Agents. 2009;33(3):201–5.

    Article  CAS  Google Scholar 

  96. Mingeot-Leclercq MP, et al. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother. 1999;43(4):727–37.

    Article  CAS  Google Scholar 

  97. Huth ME, et al. Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol. 2011;2011:937861.

    Article  CAS  Google Scholar 

  98. Gatell JM, et al. Prospective randomized double-blind comparison of nephrotoxicity and auditory toxicity of tobramycin and netilmicin. Antimicrob Agents Chemother. 1984;26(5):766–9.

    Article  CAS  Google Scholar 

  99. Lerner SA, et al. Comparative study of ototoxicity and nephrotoxicity in patients randomly assigned to treatment with amikacin or gentamicin. Am J Med. 1986;80(6B):98–104.

    Article  CAS  Google Scholar 

  100. McFadden SL, et al. Chinchilla models of selective cochlear hair cell loss. Hear Res. 2002;174:230–8.

    Article  Google Scholar 

  101. Meriwether WD, et al. Deafness following standard intravenous dose of ethacrynic acid. JAMA. 1971;216:795–8.

    Article  CAS  Google Scholar 

  102. Rybak LP. Ototoxicity of loop diuretics. Otolaryngol Clin North Am. 1993;26(5):829–44.

    Article  CAS  Google Scholar 

  103. McGhan LJ, Merchant SN. Tempral bone histopathology case of the month—erythromycin ototoxicity. Otol Neurotol. 2003;24:701–2.

    Article  Google Scholar 

  104. Swanson DJ, et al. Erythromycin ototoxicity: prospective assessment with serum concentrations and audiograms in a study of patients with pneumonia. Am J Med. 1992;92(1):61–8.

    Article  CAS  Google Scholar 

  105. Kobayashi O, et al. Ototoxic effect of erythromycin on cochlear potentials in the guinea pig. Ann Otol Rhinol Laryngol. 1997;106:599–603.

    Article  CAS  Google Scholar 

  106. Lugassy G, Shapira A. Sensorineural hearing loss associated with vincristine treatment. Blut. 1990;61(5):320–1.

    Article  CAS  Google Scholar 

  107. Moss PE, et al. Ototoxicity associated with vinblastine. Ann Pharmacother. 1999;33(4):423–5.

    Article  CAS  Google Scholar 

  108. Riga M, et al. The effect of treatment with vincristine on transient evoked and distortion product otoacoustic emissions. Int J Pediatr Otorhinolaryngol. 2006;70(6):1003–8.

    Article  CAS  Google Scholar 

  109. Eren SB, et al. Evaluation of ototoxicity of intratympanic administration of Methotrexate in rats. Int J Pediatr Otorhinolaryngol. 2017;100:132–6.

    Article  Google Scholar 

  110. Bhattacharyya TK, Dayal VS. Ototoxicity and noise-drug interaction. J Otolaryngol. 1984;13(6):361–6.

    CAS  Google Scholar 

  111. Boettcher FA, et al. Synergistic interactions of noise and other ototraumatic agents. Ear Hear. 1987;8(4):192–212.

    Article  CAS  Google Scholar 

  112. Brown JJ, et al. Combined effects of noise and neomycin. Cochlear changes in the guinea pig. Acta Otolaryngol. 1978;86(5–6):394–400.

    CAS  Google Scholar 

  113. Dayal VS, et al. Combined effects of noise and kanamycin. Ann Otol Rhinol Laryngol. 1971;80(6):897–902.

    Article  CAS  Google Scholar 

  114. DeBacker JR, et al. Long-term synergistic interaction of cisplatin- and noise-induced hearing losses. Ear Hear. 2017;38(3):282–91.

    Article  Google Scholar 

  115. McFadden D, Plattsmier HS. Aspirin can potentiate the temporary hearing loss induced by intense sounds. Hear Res. 1983;9(3):295–316.

    Article  CAS  Google Scholar 

  116. Woodford CM, et al. Effects of combinations of sodium salicylate and noise on the auditory threshold. Ann Otol Rhinol Laryngol. 1978;87(1 Pt 1):117–27.

    Article  CAS  Google Scholar 

  117. Brooks B, Knight K. Ototoxicity monitoring in children treated with platinum chemotherapy. Int J Audiol. 2018;57:1–7.

    Article  Google Scholar 

  118. Weissenstein A, et al. Progressive hearing loss after completion of cisplatin chemotherapy is common and more pronounced in children without spontaneous otoacoustic emissions before chemotherapy. Int J Pediatr Otorhinolaryngol. 2012;76(1):131–6.

    Article  Google Scholar 

  119. American Speech-Language-Hearing Association. Guidelines for the audiologic management of individuals receiving cochleotoxic drug therapy. ASHA. 1994;36(12):11–9.

    Google Scholar 

  120. Yu KK, et al. Comparison of the effectiveness of monitoring Cisplatin-induced ototoxicity with extended high-frequency pure-tone audiometry or distortion-product otoacoustic emission. Korean J Audiol. 2014;18(2):58–68.

    Article  Google Scholar 

  121. Beahan N, et al. High-frequency pure-tone audiometry in children: a test-retest reliability study relative to ototoxic criteria. Ear Hear. 2012;33(1):104–11.

    Article  Google Scholar 

  122. Frank T. High-frequency (8 to 16 kHz) reference thresholds and intrasubject threshold variability relative to ototoxicity criteria using a Sennheiser HDA 200 earphone. Ear Hear. 2001;22(2):161–8.

    Article  CAS  Google Scholar 

  123. Reuter W, et al. Hearing tests in extended high frequency range in pre-school age children. Initial results. HNO. 1997;45(3):147–52.

    Article  CAS  Google Scholar 

  124. Einarsson EJ, et al. Severe difficulties with word recognition in noise after platinum chemotherapy in childhood, and improvements with open-fitting hearing-aids. Int J Audiol. 2011;50(10):642–51.

    Article  Google Scholar 

  125. Coradini PP, et al. Ototoxicity from cisplatin therapy in childhood cancer. J Pediatr Hematol Oncol. 2007;29(6):355–60.

    Article  CAS  Google Scholar 

  126. Stavroulaki P, et al. Hearing evaluation with distortion-product otoacoustic emissions in young patients undergoing haemodialysis. Clin Otolaryngol Allied Sci. 2001;26(3):235–42.

    Article  CAS  Google Scholar 

  127. Dhooge I, et al. Distortion product otoacoustic emissions: an objective technique for the screening of hearing loss in children treated with platin derivatives. Int J Audiol. 2006;45(6):337–43.

    Article  Google Scholar 

  128. Sockalingam R, et al. Test-retest reliability of distortion-product otoacoustic emissions in children with normal hearing: a preliminary study. Int J Audiol. 2007;46(7):351–4.

    Article  Google Scholar 

  129. Hatzopoulos S, et al. Estimation of pure-tone thresholds in adults using extrapolated distortion product otoacoustic emission input/output-functions and auditory steady state responses. Int J Audiol. 2009;48(9):625–31.

    Article  Google Scholar 

  130. Schmuziger N, et al. Automated pure-tone threshold estimations from extrapolated distortion product otoacoustic emission (DPOAE) input/output functions. J Acoust Soc Am. 2006;119(4):1937–9.

    Article  Google Scholar 

  131. Abujamra AL, et al. The use of high-frequency audiometry increases the diagnosis of asymptomatic hearing loss in pediatric patients treated with cisplatin-based chemotherapy. Pediatr Blood Cancer. 2013;60(3):474–8.

    Article  CAS  Google Scholar 

  132. Kakigi A, et al. Comparison of distortion-product and transient evoked otoacoustic emissions with ABR threshold shift in chinchillas with ototoxic damage, Auris, Nasus. Larynx. 1998;25(3):223–32.

    CAS  Google Scholar 

  133. Fausti SA, et al. Early detection of ototoxicity using high-frequency, tone-burst-evoked auditory brainstem responses. J Am Acad Audiol. 1992;3(6):397–404.

    CAS  Google Scholar 

  134. Goodman SS, et al. High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans. J Acoust Soc Am. 2009;125(2):1014–32.

    Article  Google Scholar 

  135. Keefe DH, et al. Detecting high-frequency hearing loss with click-evoked otoacoustic emissions. J Acoust Soc Am. 2011;129(1):245–61.

    Article  Google Scholar 

  136. Mitchell CR, et al. Use of auditory brainstem responses for the early detection of ototoxicity from aminoglycosides or chemotherapeutic drugs. J Rehabil Res Dev. 2004;41(3A):373–82.

    Article  Google Scholar 

  137. Rosner T, et al. Hearing threshold estimation using concurrent measurement of distortion product otoacoustic emissions and auditory steady-state responses. J Acoust Soc Am. 2011;129(2):840–51.

    Article  Google Scholar 

  138. Tlumak AI, et al. 80 Hz auditory steady-state responses (ASSR) at 250 Hz and 12,000 Hz. Int J Audiol. 2007;46(1):26–30.

    Article  Google Scholar 

  139. Zhang M. High-frequency hearing impairment assessed with cochlear microphonics. Acta Otolaryngol. 2012;132(9):967–73.

    Article  Google Scholar 

  140. Langguth B, et al.. Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus Research Initiative Meeting, Regensburg, July 2006. Progress in Brain Research, vol. 166; 2007. p. 525–536.

    Google Scholar 

  141. Møller AR, et al. Textbook of tinnitus. New York: Springer; 2011.

    Book  Google Scholar 

  142. Kuk FK, et al. The psychometric properties of a tinnitus handicap questionnaire. Ear Hear. 1990;11(6):434–45.

    Article  CAS  Google Scholar 

  143. Meikle MB, et al. Measuring the negative impact of tinnitus: a brief severity index, Abstract Midwinter Research Meeting—Association for Research in Otolaryngology, vol. 18; 1995, p. 167.

    Google Scholar 

  144. Newman CW, et al. Development of the tinnitus handicap inventory. Arch Otolaryngol Head Neck Surg. 1996;122(2):143–8.

    Article  CAS  Google Scholar 

  145. Sweetow RW, Levy MC. Tinnitus severity scaling for diagnostic/therapeutic use. Hear Instrum. 2009;41:20–46.

    Google Scholar 

  146. Kim YH, et al. Tinnitus in children: association with stress and trait anxiety. Laryngoscope. 2012;122(10):2279–84.

    Article  Google Scholar 

  147. Kentish R, et al. Tinnitus in children and teenagers: practice guidance. United Kingdom: British Society of Audiology; 2014.

    Google Scholar 

  148. Chang KW, Chinosornvatana N. Practical grading system for evaluating cisplatin ototoxicity in children. J Clin Oncol. 2010;28(10):1788–95.

    Article  CAS  Google Scholar 

  149. Khan AB, et al. Cisplatin therapy in recurrent childhood brain tumors. Cancer Treat Rep. 1982;66(12):2013–20.

    CAS  Google Scholar 

  150. Schmidt CM, et al. The Muenster classification of high frequency hearing loss following cisplatin chemotherapy. HNO. 2007;55(4):299–306.

    Article  Google Scholar 

  151. Lafay-Cousin L, et al. Early cisplatin induced ototoxicity profile may predict the need for hearing support in children with medulloblastoma. Pediatr Blood Cancer. 2013;60(2):287–92.

    Article  CAS  Google Scholar 

  152. Gardner HJ. Application of a high-frequency consonant discrimination word list in hearing-aid evaluation. J Speech Hear Disord. 1971;36(3):354–5.

    Article  CAS  Google Scholar 

  153. Sininger YS, et al. Auditory development in early amplified children: factors influencing auditory-based communication outcomes in children with hearing loss. Ear Hear. 2010;31(2):166–85.

    Article  Google Scholar 

  154. Zenner HP, et al. A multisciplinary systematic review of the treatment for chronic idiopathic tinnitus. Eur Arch Otorhinolaryngol. 2017;274(5):2079–91.

    Article  Google Scholar 

  155. Kalle S, et al. Review of smart services for tinnitus self-help, diagnostics and treatments. Front Neurosci. 2018;12(541) https://doi.org/10.3389/fnins.2018.00541.

  156. McNeill C, et al. Tinnitus pitch, masking, and the effectiveness of hearing aids for tinnitus therapy. Int J Audiol. 2012;51(12):914–9.

    Article  Google Scholar 

  157. Gurney JG, et al. Evaluation of amifostine for protection against cisplatin-induced serious hearing loss in children treated for average-risk or high-risk medulloblastoma. Neuro Oncol. 2014;16(6):848–55.

    Article  CAS  Google Scholar 

  158. Duval M, Daniel SJ. Meta-analysis of the efficacy of amifostine in the prevention of cisplatin ototoxicity. J Otolaryngol Head Neck Surg. 2012;41(5):309–15.

    Google Scholar 

  159. Gallegos-Castorena S, et al. Toxicity prevention with amifostine in pediatric osteosarcoma patients treated with cisplatin and doxorubicin. Pediatr Hematol Oncol. 2007;24(6):403–8.

    Article  CAS  Google Scholar 

  160. Katzenstein HM, et al. Amifostine does not prevent platinum-induced hearing loss associated with the treatment of children with hepatoblastoma: a report of the Intergroup Hepatoblastoma Study P9645 as a part of the Children’s Oncology Group. Cancer. 2009;115(24):5828–35.

    Article  CAS  Google Scholar 

  161. Petrilli AS, et al. Use of amifostine in the therapy of osteosarcoma in children and adolescents. J Pediatr Hematol Oncol. 2002;24(3):188–91.

    Article  Google Scholar 

  162. van As JW, et al. Medical interventions for the prevention of platinum-induced hearing loss in children with cancer. Cochrane Database Syst Rev. 2016a;9:CD009219.

    Google Scholar 

  163. Hensley ML, et al. American Society of Clinical Oncology 2008 Clinical Practice Guideline Update: use of chemotherapy and radiation therapy protectants. JCO. 2009;27(1):127–45.

    Article  CAS  Google Scholar 

  164. Brock PR, et al. Sodium thiosulfate for protection from cisplatin-induced hearing loss. N Engl J Med. 2018;378(25):2376–85.

    Article  CAS  Google Scholar 

  165. Freyer DR, et al. Effects of sodium thiosulfate versus observation on development of cisplatin-induced hearing loss in children with cancer (ACCL0431): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017;18(1):63–74.

    Article  CAS  Google Scholar 

  166. Doolittle ND, et al. Delayed sodium thiosulfate as an otoprotectant against carboplatin-induced hearing loss in patients with malignant brain tumors. Clin Cancer Res. 2001;7(3):493–500.

    CAS  Google Scholar 

  167. Ishikawa E, et al. Protective effects of sodium thiosulfate for cisplatin-mediated ototoxicity in patients with head and neck cancer. Acta Otolaryngol. 2015;135(9):919–24.

    Article  CAS  Google Scholar 

  168. Madasu R, et al. Ototoxic effects of supradose cisplatin with sodium thiosulfate neutralization in patients with head and neck cancer. Arch Otolaryngol Head Neck Surg. 1997;123(9):978–81.

    Article  CAS  Google Scholar 

  169. Neuwelt EA, et al. Toxicity profile of delayed high dose sodium thiosulfate in children treated with carboplatin in conjunction with blood-brain-barrier disruption. Pediatr Blood Cancer. 2006;47(2):174–82.

    Article  Google Scholar 

  170. Zuur CL, et al. Ototoxicity in a randomized phase III trial of intra-arterial compared with intravenous cisplatin chemoradiation in patients with locally advanced head and neck cancer. J Clin Oncol. 2007;25(24):3759–65.

    Article  CAS  Google Scholar 

  171. Campbell KC, et al. D-methionine (D-met) significantly reduces kanamycin-induced ototoxicity in pigmented guinea pigs. Int J Audiol. 2016;55(5):273–8.

    Article  Google Scholar 

  172. Campbell KC, et al. Prevention of noise- and drug-induced hearing loss with D-methionine. Hear Res. 2007;226(1–2):92–103.

    Article  CAS  Google Scholar 

  173. Fox DJ, et al. d-Methionine reduces tobramycin-induced ototoxicity without antimicrobial interference in animal models. J Cyst Fibros. 2016;15(4):518–30.

    Article  CAS  Google Scholar 

  174. Sooriyaarachchi M, et al. Chemoprotection by D-methionine against cisplatin-induced side-effects: insight from in vitro studies using human plasma. Metallomics. 2014;6(3):532–41.

    Article  CAS  Google Scholar 

  175. Lorito G, et al. Dose-dependent protection on cisplatin-induced ototoxicity – an electrophysiological study on the effect of three antioxidants in the Sprague-Dawley rat animal model. Med Sci Monit. 2011;17(8):BR179–86. PMCID: PMC3539615. PMID: 21804453.

    Article  CAS  Google Scholar 

  176. Campbell KCM, et al. Oral D-Methionine (MRX-1024) significantly protects against Cisplatin-induced hearing loss: a phase II study in humans. 1st ed. 9th EFAS congress, Tenerife, Canary islands, Spain; 2009.

    Google Scholar 

  177. Riga MG, et al. Transtympanic injections of N-acetylcysteine for the prevention of cisplatin-induced ototoxicity: a feasible method with promising efficacy. Am J Clin Oncol. 2013;36(1):1–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoinette am Zehnhoff-Dinnesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tillmanns, A. et al. (2021). Ototoxicity After Childhood Cancer. In: Beck, J.D., Bokemeyer, C., Langer, T. (eds) Late Treatment Effects and Cancer Survivor Care in the Young. Springer, Cham. https://doi.org/10.1007/978-3-030-49140-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49140-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49138-3

  • Online ISBN: 978-3-030-49140-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics