Skip to main content

Endocrine Late Effects in Young Cancer Patients: Adrenal Gland

  • Chapter
  • First Online:
Late Treatment Effects and Cancer Survivor Care in the Young

Abstract

Secondary adrenal insufficiency (SAI) is a rare endocrine late effect of childhood cancer treatment and occurs by injury of the hypothalamic-pituitary (HP) axis due to CNS tumors and surgery, and particularly after cranial radiation. SAI can also occur transiently after unilateral adrenalectomy for adrenal hypercortisolism, or after chronic glucocorticoid therapy. Primary adrenal insufficiency plays no role in childhood cancer survivors and occurs as an acute consequence of cancer treatment (e.g., bilateral adrenalectomy or by inhibition of adrenal steroid biosynthesis). There are many different tests assessing the function of the HP-adrenal axis, but the optimal evaluation for ACTH deficiency is still controversial. The clinical diagnosis of SAI can be challenging due to unspecific symptoms which can develop over a long period. Thus, all childhood cancer survivors should have a regular endocrinology examination of the HPA axis. All physicians involved in the long-term follow-up of childhood cancer survivors must be aware of individuals at risk of developing HPA dysfunction. Implementation of an appropriate treatment together with a detailed instruction regarding stress dose and emergency glucocorticoid administration is necessary to prevent life-threatening adrenal crises in SAI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brignardello E, et al. Endocrine health conditions in adult survivors of childhood cancer: the need for specialized adult-focused follow-up clinics. Eur J Endocrinol. 2013;168(3):465–72. https://doi.org/10.1530/eje-12-1043.

    Article  CAS  Google Scholar 

  2. Chemaitilly W, Cohen LE. Diagnosis of endocrine disease: endocrine late-effects of childhood cancer and its treatments. Eur J Endocrinol. 2017;176(4):R183–203. https://doi.org/10.1530/eje-17-0054.

    Article  CAS  Google Scholar 

  3. Chemaitilly W, Sklar CA. Childhood cancer treatments and associated endocrine late effects: a concise guide for the pediatric endocrinologist. Horm Res Paediatr. 2019;91(2):74–82. https://doi.org/10.1159/000493943.

    Article  CAS  Google Scholar 

  4. Gebauer J, et al. Long-term endocrine and metabolic consequences of cancer treatment: a systematic review. Endocr Rev. 2019;40(3):711–67. https://doi.org/10.1210/er.2018-00092.

    Article  Google Scholar 

  5. Hudson MM, et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013;309(22):2371–81. https://doi.org/10.1001/jama.2013.6296.

    Article  CAS  Google Scholar 

  6. Mostoufi-Moab S, et al. Endocrine abnormalities in aging survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2016;34(27):3240–7. https://doi.org/10.1200/jco.2016.66.6545.

    Article  Google Scholar 

  7. Crowne E, et al. Effect of cancer treatment on hypothalamic-pituitary function. Lancet Diabetes Endocrinol. 2015;3(7):568–76. https://doi.org/10.1016/s2213-8587(15)00008-x.

    Article  CAS  Google Scholar 

  8. Darzy KH, Shalet SM. Hypopituitarism following radiotherapy revisited. Endocr Dev. 2009;15:1–24. https://doi.org/10.1159/000207607.

    Article  Google Scholar 

  9. Constine LS, et al. Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med. 1993;328(2):87–94. https://doi.org/10.1056/NEJM199301143280203.

    Article  CAS  Google Scholar 

  10. Wei C, Crowne EC. The hypothalamic-pituitary-adrenal axis in childhood cancer survivors. Endocr Relat Cancer. 2018;25(10):R479–r496. https://doi.org/10.1530/erc-18-0217.

    Article  CAS  Google Scholar 

  11. van Iersel L, et al. Hypothalamic-pituitary disorders in childhood cancer survivors: prevalence, risk factors and long-term health outcomes. J Clin Endocrinol Metab. 2019;104(12):6101–15. https://doi.org/10.1210/jc.2019-00834.

    Article  Google Scholar 

  12. Schmiegelow M. Endocrinological late effects following radiotherapy and chemotherapy of childhood brain tumours. Dan Med Bull. 2006;53(3):326–41.

    Google Scholar 

  13. Patterson BC, et al. Adrenal function testing in pediatric cancer survivors. Pediatr Blood Cancer. 2009;53(7):1302–7. https://doi.org/10.1002/pbc.22208.

    Article  Google Scholar 

  14. Rose SR, et al. Hypothalamic dysfunction after chemotherapy. J Pediatr Endocrinol Metab. 2004;17(1):55–66. https://doi.org/10.1515/jpem.2004.17.1.55.

    Article  Google Scholar 

  15. van Waas M, et al. Adrenal function in adult long-term survivors of nephroblastoma and neuroblastoma. Eur J Cancer. 2012;48(8):1159–66. https://doi.org/10.1016/j.ejca.2012.02.046.

    Article  CAS  Google Scholar 

  16. de Filette J, et al. A systematic review and meta-analysis of endocrine-related adverse events associated with immune checkpoint inhibitors. Horm Metab Res. 2019;51(3):145–56. https://doi.org/10.1055/a-0843-3366.

    Article  CAS  Google Scholar 

  17. Gordijn MS, et al. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia. Cochrane Database Syst Rev. 2015;11(11):Cd008727. https://doi.org/10.1002/14651858.CD008727.pub3.

    Article  Google Scholar 

  18. Rensen N, et al. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia. Cochrane Database Syst Rev. 2017;11:Cd008727. https://doi.org/10.1002/14651858.CD008727.pub4.

    Article  Google Scholar 

  19. Sklar CA, et al. Hypothalamic-pituitary and growth disorders in survivors of childhood cancer: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2018;103(8):2761–84. https://doi.org/10.1210/jc.2018-01175.

    Article  Google Scholar 

  20. Ng SM, et al. A systematic review and meta-analysis of Synacthen tests for assessing hypothalamic-pituitary-adrenal insufficiency in children. Arch Dis Child. 2016;101:847. https://doi.org/10.1136/archdischild-2015-308925.

    Article  Google Scholar 

  21. Nandagopal R, et al. Endocrine late effects of childhood cancer therapy: a report from the children’s oncology group. Horm Res. 2008;69(2):65–74. https://doi.org/10.1159/000111809.

    Article  CAS  Google Scholar 

  22. Agwu JC, et al. Tests of adrenal insufficiency. Arch Dis Child. 1999;80(4):330–3.

    Article  CAS  Google Scholar 

  23. Kazlauskaite R, et al. Corticotropin tests for hypothalamic-pituitary-adrenal insufficiency: a metaanalysis. J Clin Endocrinol Metab. 2008;93(11):4245–53. https://doi.org/10.1210/jc.2008-0710.

    Article  CAS  Google Scholar 

  24. Maguire AM, et al. Evaluation of adrenal function using the human corticotrophin-releasing hormone test, low dose Synacthen test and 9am cortisol level in children and adolescents with central adrenal insufficiency. Clin Endocrinol (Oxf). 2008;68(5):683–91. https://doi.org/10.1111/j.1365-2265.2007.03100.x.

    Article  CAS  Google Scholar 

  25. Darzy KH. Radiation-induced hypopituitarism after cancer therapy: who, how and when to test. Nat Clin Pract Endocrinol Metab. 2009;5(2):88–99. https://doi.org/10.1038/ncpendmet1051.

    Article  CAS  Google Scholar 

  26. Crowley RK, et al. Central hypoadrenalism. J Clin Endocrinol Metab. 2014;99(11):4027–36. https://doi.org/10.1210/jc.2014-2476.

    Article  CAS  Google Scholar 

  27. Kazlauskaite R, Maghnie M. Pitfalls in the diagnosis of central adrenal insufficiency in children. Endocr Dev. 2010;17:96–107. https://doi.org/10.1159/000262532.

    Article  Google Scholar 

  28. Rose SR, et al. ACTH deficiency in childhood cancer survivors. Pediatr Blood Cancer. 2005;45(6):808–13. https://doi.org/10.1002/pbc.20327.

    Article  Google Scholar 

  29. Shah A, et al. Hazards of pharmacological tests of growth hormone secretion in childhood. BMJ. 1992;304(6820):173–4.

    Article  CAS  Google Scholar 

  30. Thaler LM, Blevins LS Jr. The low dose (1-microg) adrenocorticotropin stimulation test in the evaluation of patients with suspected central adrenal insufficiency. J Clin Endocrinol Metab. 1998;83(8):2726–9. https://doi.org/10.1210/jcem.83.8.5039.

    Article  CAS  Google Scholar 

  31. Tordjman K, et al. The role of the low dose (1 microgram) adrenocorticotropin test in the evaluation of patients with pituitary diseases. J Clin Endocrinol Metab. 1995;80(4):1301–5.

    CAS  Google Scholar 

  32. Abdu TA, et al. Comparison of the low dose short synacthen test (1 microg), the conventional dose short synacthen test (250 microg), and the insulin tolerance test for assessment of the hypothalamo-pituitary-adrenal axis in patients with pituitary disease. J Clin Endocrinol Metab. 1999;84(3):838–43.

    CAS  Google Scholar 

  33. Dickstein G, et al. One microgram is the lowest ACTH dose to cause a maximal cortisol response. There is no diurnal variation of cortisol response to submaximal ACTH stimulation. Eur J Endocrinol. 1997;137(2):172–5.

    Article  CAS  Google Scholar 

  34. Tordjman K, et al. Low-dose (1 microgram) adrenocorticotrophin (ACTH) stimulation as a screening test for impaired hypothalamo-pituitary-adrenal axis function: sensitivity, specificity and accuracy in comparison with the high-dose (250 microgram) test. Clin Endocrinol. 2000;52(5):633–40.

    Article  CAS  Google Scholar 

  35. Ospina NS, et al. ACTH stimulation tests for the diagnosis of adrenal insufficiency: systematic review and meta-analysis. J Clin Endocrinol Metab. 2016;101(2):427–34. https://doi.org/10.1210/jc.2015-1700.

    Article  CAS  Google Scholar 

  36. Cross AS, et al. International survey on high- and low-dose synacthen test and assessment of accuracy in preparing low-dose synacthen. Clin Endocrinol. 2018;88(5):744–51. https://doi.org/10.1111/cen.13559.

    Article  Google Scholar 

  37. Ucar A, et al. Diagnosis and management of pediatric adrenal insufficiency. World J Pediatr. 2016;12(3):261–74. https://doi.org/10.1007/s12519-016-0018-x.

    Article  CAS  Google Scholar 

  38. Wildi-Runge S, et al. A search for variables predicting cortisol response to low-dose corticotropin stimulation following supraphysiological doses of glucocorticoids. J Pediatr. 2013;163(2):484–8. https://doi.org/10.1016/j.jpeds.2013.01.011.

    Article  CAS  Google Scholar 

  39. Johannsson G, et al. Improving glucocorticoid replacement therapy using a novel modified-release hydrocortisone tablet: a pharmacokinetic study. Eur J Endocrinol. 2009;161(1):119–30. https://doi.org/10.1530/eje-09-0170.

    Article  CAS  Google Scholar 

  40. Nilsson AG, et al. Prospective evaluation of long-term safety of dual-release hydrocortisone replacement administered once daily in patients with adrenal insufficiency. Eur J Endocrinol. 2014;171(3):369–77. https://doi.org/10.1530/eje-14-0327.

    Article  CAS  Google Scholar 

  41. Gaillard RC, et al. Overall and cause-specific mortality in GH-deficient adults on GH replacement. Eur J Endocrinol. 2012;166(6):1069–77. https://doi.org/10.1530/eje-11-1028.

    Article  CAS  Google Scholar 

  42. Mills JL, et al. Long-term mortality in the United States cohort of pituitary-derived growth hormone recipients. J Pediatr. 2004;144(4):430–6. https://doi.org/10.1016/j.jpeds.2003.12.036.

    Article  CAS  Google Scholar 

  43. Giavoli C, et al. Effect of recombinant human growth hormone (GH) replacement on the hypothalamic-pituitary-adrenal axis in adult GH-deficient patients. J Clin Endocrinol Metab. 2004;89(11):5397–401. https://doi.org/10.1210/jc.2004-1114.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmuth G. Dörr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dörr, H.G., Brabant, G. (2021). Endocrine Late Effects in Young Cancer Patients: Adrenal Gland. In: Beck, J.D., Bokemeyer, C., Langer, T. (eds) Late Treatment Effects and Cancer Survivor Care in the Young. Springer, Cham. https://doi.org/10.1007/978-3-030-49140-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49140-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49138-3

  • Online ISBN: 978-3-030-49140-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics