Skip to main content

Modern Electrical Drives: An Overview

  • Chapter
  • First Online:
Advanced Electrical Drives

Part of the book series: Power Systems ((POWSYS))

Abstract

An electrical drive, as shown in Fig. 1.1 can be defined in terms of its ability to efficiently convert energy from an electrical power source to a mechanical load. The main purpose of the drive is to control a mechanical load or process. The direction of energy flow is generally from electrical to mechanical, i.e., motoring mode with power flow from the power source to the mechanical load via the converter and machine as shown in Fig. 1.1. However, the energy flow can in some cases be reversed, in which case the drive often is configured bi-directional to also allow energy flow from the mechanical load to the power source, i.e., generating mode. Modern electrical drives, as considered in this book, utilize power electronic devices to (digitally) control this power conversion process, a feature which is highlighted in Fig. 1.1 by the presence of the modulator and controller unit.

Typical drive setup block diagram

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AixControl GmbH (2010). http://www.aixcontrol.de

  2. Alcoa, Inc (2010). http://www.alcoa.com

  3. Altair Engineering, Inc (2018). https://www.altair.com/

  4. Analog Devices, Inc (2010). http://www.analog.com/en/embedded-processing-dsp/blackfin/vdsp-bf-sh-ts/processors/product.html

  5. Blaschke F (1972) The principle of field orientation as applied to the new transvektor closed-loop control system for rotating-field machines. Siemens Rev 39(5):217–219

    Google Scholar 

  6. Carstensen CE, Inderka RB, Netzer Y, Doncker RWWD (2002) Implementation of a 75 kW switched reluctance drive for electric vehicles. In: 19th International electric vehicle symposium EVS19

    Google Scholar 

  7. CEDRAT Group (2010). http://www.cedrat.com/en/software-solutions/flux.html

  8. De Doncker R (2006) Modern electrical drives: design and future trends. In: Proceedings of the international power electronics and motion control conference, IPEMC2006, Beijing, vol 1, pp 1–8. https://doi.org/10.1109/IPEMC.2006.4777944

  9. Depenbrock M (1988) Direct self-control (DSC) of inverter fed induction machine. IEEE Trans Power Electron 3:4

    Article  Google Scholar 

  10. Hasse K (1969) Zur dynamik drehzahlgeregelter antriebe mit stromrichtergespeisten asynchron-kurzschlussläufermaschinen. PhD Thesis, TH Darmstadt

    Google Scholar 

  11. Holtz J (1993) Speed estimation and sensorless control of AC drives. In: IEEE industrial electronics conference (IECON’1993), vol 2, pp 649–654. https://doi.org/10.1109/IECON.1993.339003

  12. Kahlen K, Doncker RD (2000) Current regulators for multi-phase permanent magnet spherical machines. In: Conference record of the 2000 IEEE industry applications conference. Thirty-Fifth IAS annual meeting and world conference on industrial applications of electrical energy (Cat. No. 00CH37129). IEEE, Piscataway. https://doi.org/10.1109/ias.2000.882153

  13. Kahlen K, Voss I, Priebe C, De Doncker R (2004) Torque control of a spherical machine with variable pole pitch. IEEE Trans Pow Electr 19(6):1628–1634. https://doi.org/10.1109/TPEL.2004.836623

    Article  Google Scholar 

  14. Plexim GmbH (2018). https://www.plexim.com/plecs

  15. Pulle DWJ, Darnell P, Veltman A (2015) Applied control of electrical drives. Springer International Publishing, Berlin. https://doi.org/10.1007/978-3-319-20043-9

  16. Semikron International GmbH (2010). http://www.semikron.com

  17. Siemens AG (2010). http://support.automation.siemens.com/

  18. Speed Laboratory (2010). http://www.speedlab.co.uk/software.html

  19. Texas Instruments Incorporated (2018). http://www.ti.com/tool/LAUNCHXL-F28379D

  20. Texas Instruments Incorporated (2018). http://www.ti.com/ww/en/mcu/instaspin/#

  21. Texas Instruments Incorporated (2018). http://processors.wiki.ti.com/index.php/C2000_LaunchPad#LAUNCHXL-F28069M

  22. The MathWorks, Inc (2010). http://www.mathworks.com/

  23. van der Broeck H, Skudelny HC, Stanke G (1988) Analysis and realization of a pulsewidth modulator based on voltage space vectors. IEEE Trans Ind Appl 24(1):142–150. https://doi.org/10.1109/28.87265

    Article  Google Scholar 

  24. Veltman A, Pulle DW, Doncker RWD (2016) Fundamentals of electrical drives. Springer International Publishing, Berlin. https://doi.org/10.1007/978-3-319-29409-4

  25. Zener Electric Pty Ltd (2010). http://www.zener.com.au

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Doncker, R.W., Pulle, D.W.J., Veltman, A. (2020). Modern Electrical Drives: An Overview. In: Advanced Electrical Drives. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-48977-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48977-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48976-2

  • Online ISBN: 978-3-030-48977-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics