Skip to main content

Regression Neural Networks with a Highly Robust Loss Function

  • Conference paper
  • First Online:
Analytical Methods in Statistics (AMISTAT 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 329))

Included in the following conference series:

Abstract

Artificial neural networks represent an important class of methods for fitting nonlinear regression to data with an unknown regression function. However, usual ways of training of the most common types of neural networks applied to nonlinear regression tasks suffer from the presence of outlying measurements (outliers) in the data. So far, only a few robust alternatives for training common forms of neural networks have been proposed. In this work, we robustify two common types of neural networks by considering robust versions of their loss functions, which have turned out to be successful in linear regression. Particularly, we extend the idea of using the loss of the least trimmed squares estimator to radial basis function networks. We also propose multilayer perceptrons and radial basis function networks based on the loss of the least weighted squares estimator. The performance of these novel methods is compared with that of standard neural networks on 4 datasets. The results bring arguments in favor of the novel robust approach based on the least weighted squares estimator with trimmed linear weights in terms of yielding the smallest robust prediction error in a variety of situations. Robust neural networks are even able to outperform the prediction ability of support vector regression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alnafessah, A., Casale, G.: Artificial neural networks based techniques for anomaly detection in Apache Spark. Cluster Computing (2020) (online first)

    Google Scholar 

  2. Borş, A.G., Pitas, I.: Robust RBF networks. In: Howlett, R.J., Jain, L.C., Kacprzyk, J. (eds.), Radial basis function networks 1. Recent developments in theory and applications, pp. 123–133. Physica Verlag Rudolf Liebing KG, Vienna (2001)

    Google Scholar 

  3. Chollet, F.: Keras. Github repository (2015). https://github.com/fchollet/keras

  4. Čížek, P.: Semiparametrically weighted robust estimation of regression models. Comput. Stat. Data Anal. 55, 774–788 (2011)

    Article  MathSciNet  Google Scholar 

  5. Čížek, P.: Reweighted least trimmed squares: an alternative to one-step estimators. Test 22, 514–533 (2013)

    Article  MathSciNet  Google Scholar 

  6. Davies, L.: Data analysis and approximate models. In: Nonparametric Regression and Image Analysis. CRC Press, Boca Raton, Model Choice, Location-scale, Analysis of Variance (2014)

    Google Scholar 

  7. Du, K.L., Swamy, M.N.S.: Neural Networks and Statistical Learning. Springer, London (2014)

    Book  Google Scholar 

  8. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, Irvine (2010). http://archive.ics.uci.edu/ml

  9. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009)

    Book  Google Scholar 

  10. Haykin, S.O.: Neural Networks and Learning Machines: A Comprehensive Foundation, 3rd edn. Prentice Hall, Upper Saddle River (2009)

    Google Scholar 

  11. Hubert, M., Rousseeuw, P.J., van Aelst, S.: High-breakdown robust multivariate methods. Stat. Sci. 23, 92–119 (2008)

    Article  MathSciNet  Google Scholar 

  12. Jurečková, J., Picek, J., Schindler, M.: Robust Statistical Methods with R, 2nd edn. Chapman & Hall/CRC, Boca Raton (2019)

    Book  Google Scholar 

  13. Kalina, J.: Implicitly weighted methods in robust image analysis. J. Math. Imag. Vis. 44, 449–462 (2012)

    Article  MathSciNet  Google Scholar 

  14. Kalina, J.: A robust supervised variable selection for noisy high-dimensional data. BioMed. Res. Int. Article 320385 (2015)

    Google Scholar 

  15. Kalina, J., Tichavský, J.: On robust estimation of error variance in (highly) robust regression. Meas. Sci. Rev. 20, 1–9 (2020)

    Article  Google Scholar 

  16. Kalina, J., Vidnerová, P.: Robust training of radial basis function neural networks. In: Proceedings 18th International Conference ICAISC 2019, pp. 113–124 (2019)

    Google Scholar 

  17. Kordos, M., Rusiecki, A.: Reducing noise impact on MLP training—techniques and algorithms to provide noise-robustness in MLP network training. Soft Comput. 20, 46–65 (2016)

    Article  Google Scholar 

  18. Lee, C.C., Chung, P.C., Tsai, J.R., Chang, C.I.: Robust radial basis function neural networks. IEEE Trans. Syst. Man Cybern. B 29, 674–685 (1999)

    Article  Google Scholar 

  19. Mašíček, L.: Optimality of the least weighted squares estimator. Kybernetika 40, 715–734 (2004)

    MathSciNet  MATH  Google Scholar 

  20. R Core Team: R: A language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna (2019). https://www.R-project.org/

  21. Roelant, E., van Aelst, S., Willems, G.: The minimum weighted covariance determinant estimator. Metrika 70, 177–204 (2009)

    Article  MathSciNet  Google Scholar 

  22. Rousseeuw, P.J., Hubert, M.: Robust statistics for outlier detection. WIREs Data Mining Knowl. Discov. 1, 73–79 (2011)

    Article  Google Scholar 

  23. Rousseeuw, P.J., Van Driessen, K.: Computing LTS regression for large data sets. Data Mining Knowl. Discov. 12, 29–45 (2006)

    Article  MathSciNet  Google Scholar 

  24. Rusiecki, A.: Robust learning algorithm based on LTA estimator. Neurocomputing 120, 624–632 (2013)

    Article  Google Scholar 

  25. Rusiecki, A., Kordos, M., Kamiński, T., Greń, K.: Training neural networks on noisy data. Lect. Notes Artif. Intel. 8467, 131–142 (2014)

    Google Scholar 

  26. Su, M.J., Deng, W.: A fast robust learning algorithm for RBF network against outliers. Lect. Notes Comput. Sci. 4113, 280–285 (2006)

    Article  Google Scholar 

  27. Víšek, J.Á.: The least trimmed squares. Part I: consistency. Kybernetika 42, 1–36 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Víšek, J.Á.: Consistency of the least weighted squares under heteroscedasticity. Kybernetika 47, 179–206 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Wilcox, R.R.: Introduction to Robust Estimation and Hypothesis Testing, 2nd edn. Elsevier, Burlington (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by the projects GA19-05704S and GA18-23827S of the Czech Science Foundation. The authors are grateful to Jan Tichavský and Jiří Tumpach for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kalina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalina, J., Vidnerová, P. (2020). Regression Neural Networks with a Highly Robust Loss Function. In: Maciak, M., Pešta, M., Schindler, M. (eds) Analytical Methods in Statistics. AMISTAT 2019. Springer Proceedings in Mathematics & Statistics, vol 329. Springer, Cham. https://doi.org/10.1007/978-3-030-48814-7_2

Download citation

Publish with us

Policies and ethics