Skip to main content

Interplay of Protein Phosphatases with Cytoskeleton Signaling in Response to Stress Factors in Plants

  • Chapter
  • First Online:
Protein Phosphatases and Stress Management in Plants

Abstract

Plant stress implies a series of processes and states where growth and development conditions are extremely different from optimal ones. Numerous data indicate that plant response to stress is strongly associated with changes in protein phosphorylation state under all known stress factors and extracellular signals. Self-incompatibility, initiation of mitosis, isoprenoid biosynthesis, cytoplasmic streaming, sucrose phosphate synthase activity, MSERK1 activity and phosphoenolpyruvate carboxylase activity are the examples of regulation of cellular responses that involved different protein kinases and protein phosphatases. Another feature of protein phosphatase is regulation, which underlies the mutual relationship between the type of a biotic stress factor and different regulating subunits. Here we present a brief overview of current experimental data on the role of plant phosphatases in stress, with an emphasis on tyrosine protein phosphatases (PTP1, DSPsI, MKPs) and Ser/Thr protein phosphatases of types PP1, PP2 and PP2C, especially with regard to cytoskeletal regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alonso A, Sasin J, Bottini N et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711

    Article  CAS  PubMed  Google Scholar 

  • Awotunde OS, Lechward K, Krajewska K et al (2003) Interaction of maize (Zea mays) protein phosphatase 2A with tubulin. Acta Biochim Pol 50(1):131–138

    Article  CAS  PubMed  Google Scholar 

  • Bakrim N, Echevarria C, Cretin C et al (1992) Regulatory phosphorylation of Sorghum leaf phosphoenolpyruvate carboxylase. Identification of the protein-serine kinase and some elements of the signal-transduction cascade. Eur J Biochem 204(2):821–830

    Article  CAS  PubMed  Google Scholar 

  • Baldin V, Cans C, Superti-Furga G, Ducommun B (1997) Alternative splicing of the human CDC25B tyrosine phosphatase. Possible implications for growth control? Oncogene 14(20):2485–2495

    Article  CAS  PubMed  Google Scholar 

  • BaluÅ¡ka F, Wojtaszek P, Volkmann D, Barlow P (2003) The architecture of polarized cell growth: the unique status of elongating plant cells. Bioessays 25(6):569–76. https://doi.org/10.1002/bies.10282

  • Bartels S, Anderson JC, González Besteiro MA et al (2009) MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell 21(9):2884–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels S, González Besteiro MA, Lang D, Ulm R (2010) Emerging functions for plant MAP kinase phosphatases. Trends Plant Sci 15(6):322–329

    Article  CAS  PubMed  Google Scholar 

  • Bhaskara GB, Wen TN, Nguyen TT, Verslues PE (2017) Protein phosphatase 2Cs and microtubule-associated stress protein 1 control microtubule stability, plant growth, and drought response. Plant Cell 29(1):169–191

    Article  CAS  PubMed  Google Scholar 

  • Blume Y, Yemets A, Sulimenko V et al (2008b) Tyrosine phosphorylation of plant tubulin. Planta 229(1):143–150

    Article  CAS  PubMed  Google Scholar 

  • Blume YB, Krasylenko YA, Yemets AI (2016) The role of the plant cytoskeleton in phytohormone signaling under abiotic and biotic stresses. In: Pandey GK (ed) Mechanism of plant hormone signaling under stress, vol 2. John Wiley and Sons, Inc., Hoboken, NJ, pp 127–185

    Google Scholar 

  • Blume YB, Lloyd CW, Yemets AI (2008a) Plant tubulin phosphorylation and its role in cell cycle progression. In: Blume YB, Baird WV, Yemets AI, Breviario D (eds) The plant cytoskeleton: a key tool for agro-biotechnology. Springer, Dordrecht, pp 145–159

    Chapter  Google Scholar 

  • Bollen M, Gerlich DW, Lesage B (2009) Mitotic phosphatases: from entry guards to exit guides. Trends Cell Biol 19(10):531–541

    Article  CAS  PubMed  Google Scholar 

  • Cho HP, Liu Y, Gomez M et al (2005) The dual-specificity phosphatase CDC14B bundles and stabilizes microtubules. Mol Cell Biol 25(11):4541–4551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SH, Lee CH, Ahn Y et al (2004) Redox regulation of PTEN and protein tyrosine phosphatases in H(2)O(2) mediated cell signaling. FEBS Lett 560(1–3):7–13

    Article  CAS  PubMed  Google Scholar 

  • Chow EW, Clancey SA, Billmyre RB, Averette AF, Granek JA, Mieczkowski P, Cardenas ME, Heitman J (2017) Elucidation of the calcineurin-Crz1 stress response transcriptional network in the human fungal pathogen Cryptococcus neoformans. PLoS Genet 13(4):e1006667. https://doi.org/10.1371/journal.pgen.1006667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • De Wulf P, Montani F, Visintin R (2009) Protein phosphatases take the mitotic stage. Curr Opin Cell Biol 21(6):806–815

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Li H, Zhang X et al (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32(3):278–289

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Lv J, Shi Y et al (2019) EGR2 phosphatase regulates OST1 kinase activity and freezing tolerance in Arabidopsis. EMBO J 38(1):e99819. https://doi.org/10.15252/embj.201899819

    Article  CAS  PubMed  Google Scholar 

  • Duckett CM, Lloyd CW (1994) Gibberellic acid-induced microtubule reorientation indwarf peas is accompanied by rapid modification of anα-tubulin isotype. Plant J 5(3):363–372

    Article  CAS  Google Scholar 

  • Duerr B, Gawienowski M, Ropp T, Jacobs T (1993) MsERK1: a mitogen-activated protein kinase from a flowering plant. Plant Cell 5(1):87–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durian G, Rahikainen M, Alegre S et al (2016) Protein phosphatase 2A in the regulatory network underlying biotic stress resistance in plants. Front Plant Sci 7:812. https://doi.org/10.3389/fpls.2016.00812

    Article  PubMed  PubMed Central  Google Scholar 

  • Farkas I, Dombrádi V, Miskei M et al (2007) Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci 12(4):169–176

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Duan Y, Qin Y, Sun W, Zhuang Z, Zhu D, Jiang L (2017) The N-terminal pY33XL motif of CaPsy2 is critical for the function of protein phosphatase 4 in CaRad53 deactivation, DNA damage-induced filamentation and virulence in Candida albicans. Int J Med Microbiol 307(8):471–480

    Article  CAS  PubMed  Google Scholar 

  • Fordham-Skelton AP, Skipsey M, Eveans IM et al (1999) Higher plant tyrosine-specific protein phosphatases (PTPs) contain novel amino-terminal domains: expression during embryogenesis. Plant Mol Biol 39(3):593–605

    Article  CAS  PubMed  Google Scholar 

  • Foster R, Mattsson O, Mundy J (2003) Plants flex their skeletons. Trends Plant Sci 8(5):202–204

    Article  CAS  PubMed  Google Scholar 

  • Fu C, Donadio N, Cardenas ME, Heitman J (2018) Dissecting the roles of the calcineurin pathway in unisexual reproduction, stress responses, and virulence in Cryptococcus deneoformans. Genetics 208(2):639–653

    Article  CAS  PubMed  Google Scholar 

  • Fuchs S, Tischer SV, Wunsche C et al (2014) Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors. Proc Natl Acad Sci U S A 111(15):5741–5746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y et al (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442

    Article  PubMed  Google Scholar 

  • Fujita S, Pytela J, Hotta T et al (2013) An atypical tubulin kinase mediates stress-induced microtubule depolymerization in Arabidopsis. Curr Biol 23(20):1969–1978

    Article  CAS  PubMed  Google Scholar 

  • Gadadhar S, Bodakuntla S, Natarajan K, Janke C (2017) The tubulin code at a glance. J Cell Sci 130(8):1347–1353

    Article  CAS  PubMed  Google Scholar 

  • Ghelis T (2011) Signal processing by protein tyrosine phosphorylation in plants. Plant Sig Behav 6(7):942–951

    Article  CAS  Google Scholar 

  • Ghelis T, Bolbach G, Clodic G et al (2008) Protein tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent processes in Arabidopsis seeds and suspension cells. Plant Physiol 148(3):1668–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghorbel M, Zaidi I, Robe E et al (2015) The activity of the wheat MAP kinase phosphatase 1 is regulated by manganese and by calmodulin. Biochimie 108:13–19

    Article  CAS  PubMed  Google Scholar 

  • Gimona M (2008) Protein linguistics and the modular code of the cytoskeleton. In: Barbieri M, Hoffmeyer J (eds) The codes of life. Biosemiotics, vol 1. Springer, Dordrecht, pp 189–206

    Chapter  Google Scholar 

  • Gonzalez-Quevedo R, Shoffer M, Horng L, Oro AE (2005) Receptor tyrosine phosphatase-dependent cytoskeletal remodeling by the hedgehog-responsive gene MIM/BEG4. J Cell Biol 168(3):453–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Rubio G, Fernández-Acero T, Martín H, Molina M (2019) Mitogen-activated protein kinase phosphatases (MKPs) in fungal signaling: conservation, function, and regulation. Int J Mol Sci 20(7):E1709. https://doi.org/10.3390/ijms20071709

    Article  CAS  PubMed  Google Scholar 

  • Goring DR, Glavin TL, Schafer U, Rothstein SJ (1993) An S receptor kinase gene in self-compatible Brassica napus has a 1-bp deletion. Plant Cell 5(5):531–539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gou M, Shi Z, Zhu Y et al (2012) The F-box protein CPR1/CPR30 negatively regulates R protein SNC1 accumulation. Plant J 69(3):411–420

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Huang Y, Kieber J, Luan S (1998) Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis. Plant J 16(5):581–589

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12(8):343–351

    Article  CAS  PubMed  Google Scholar 

  • Ho HL (2015) Functional roles of plant protein kinases in signal transduction pathways during abiotic and biotic stress. J Biodivers Bioprospect Develop 2:147. https://doi.org/10.4172/2376-0214.1000147

    Article  Google Scholar 

  • Hua J (2013) Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol 16(4):406–413

    Article  CAS  PubMed  Google Scholar 

  • Huber SC, Huber JL (1991) Regulation of maize leaf sucrose-phosphate synthase by protein phosphorylation. Plant Cell Physiol 32(3):319–326

    Article  CAS  Google Scholar 

  • Hunter T (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21(2):140–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A 77(3):1311–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeger KE, Graf A, Wigge PA (2006) The control of flowering in time and space. J Exp Bot 57(13):3415–3418

    Article  CAS  PubMed  Google Scholar 

  • Janke C (2014) The tubulin code: molecular components, readout mechanisms, and functions. J Cell Biol 206(4):461–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenks MA, Wood AJ (2009) Genes for plant abiotic stress. John Wiley & Sons, New York, 344 p

    Book  Google Scholar 

  • Jiang L, Chen Y, Luo L, Peck SC (2018) Central roles and regulatory mechanisms of dual-specificity MAPK phosphatases in developmental and stress signaling. Front Plant Sci 9:1697. https://doi.org/10.3389/fpls.2018.01697

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones C, Anderson S, Singha UK, Chaudhuri M (2008) Protein phosphatase 5 is required for Hsp90 function during proteotoxic stresses in Trypanosoma brucei. Parasitol Res 102(5):835–844

    Article  PubMed  Google Scholar 

  • Karpov P, Raevsky A, Korablyov M, Blume Y (2014) Identification of plant homologues of dual specificity Yak1-related kinases. Computat Biol J 2014:909268. https://doi.org/10.1155/2014/909268

    Article  Google Scholar 

  • Karpov PA, Nadezhdina ES, Yemets AI, Blume YB (2010a) Results of the clusterization of human microtubule and cell cycle related serine/threonine protein kinases and their plant homologues. Mosc Univ Biol Sci Bull 65(4):213–216

    Article  Google Scholar 

  • Karpov PA, Nadezhdina ES, Yemets AI et al (2010b) Bioinformatic search of plant microtubule- and cell cycle related serine-threonine protein kinases. BMC Genomics 11(Suppl 1):S14. https://doi.org/10.1186/1471-2164-11-S1-S14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katou S, Kuroda K, Seo S et al (2007) A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice. Plant Cell Physiol 48(2):332–344

    Article  CAS  PubMed  Google Scholar 

  • Kerk D, Templeton G, Moorhead GB (2008) Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants. Plant Physiol 146(2):351–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keyse SM, Emslie EA (1992) Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature 359(6396):644–646

    Article  CAS  PubMed  Google Scholar 

  • Kirik A, Ehrhardt DW, Kirik V (2012) TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells. Plant Cell 24(3):1158–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klyachko NL (2005) The cytoskeleton and intracellular motility in plants. Russ J Plant Physiol 52(5):700–708

    Article  CAS  Google Scholar 

  • Kobayashi I, Kobayashi Y (2007) Microtubules and pathogen defense. In: Nick P (ed) Plant microtubules. Springer, Heidelberg, pp 121–140

    Google Scholar 

  • Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188(3):655–673

    Article  CAS  PubMed  Google Scholar 

  • Kraus PR, Heitman J (2003) Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. Biochem Biophys Res Commun 311(4):1151–1157

    Article  CAS  PubMed  Google Scholar 

  • Kültz D, Burg M (1998) Evolution of osmotic stress signaling via MAP kinase cascades. J Exp Biol 201(Pt 22):3015–3021

    PubMed  Google Scholar 

  • Kumar R, Musiyenko A, Oldenburg A et al (2004) Post-translational generation of constitutively active cores from larger phosphatases in the malaria parasite, Plasmodium falciparum: implications for proteomics. BMC Mol Biol 5:6. https://doi.org/10.1186/1471-2199-5-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahiri S, Banerjee S, Dutta T, Sengupta S, Dey S, Roy R, Sengupta D, Chattopadhyay K, Ghosh AK (2014) Enzymatic and regulatory attributes of trehalose-6-phosphate phosphatase from Candida utilis and its role during thermal stress. J Cell Physiol 229(9):1245–1255

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Ellis BE (2007) Arabidopsis MAPK phosphatase 2 (MKP2) positively regulates oxidative stress tolerance and inactivates the MPK3 and MPK6 MAPKs. J Biol Chem 282(34):25020–25029. https://doi.org/10.1074/jbc.M701888200

  • Lee JS, Wang S, Sritubtim S et al (2009) Arabidopsis mitogen-activated protein kinase MPK12 interacts with the MAPK phosphatase IBR5 and regulates auxin signaling. Plant J 57(6):975–985

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Song EH, Kim HS et al (2008) Regulation of MAPK phosphatase 1 (AtMKP1) by calmodulin in Arabidopsis. J Biol Chem 283(35):23581–23588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Roux SJ (1992) Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei. Proc Natl Acad Sci U S A 89(18):8434–8438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148(1–2):4–14

    Article  CAS  Google Scholar 

  • Lillo C, Kataya AR, Heidari B et al (2014) Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues. Plant Cell Environ 37(12):2631–2648

    Article  CAS  PubMed  Google Scholar 

  • Lindqvist A, Källström H, Lundgren A et al (2005) Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol 171(1):35–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Yang H, Bao F et al (2015a) IBR5 modulates temperature-dependent, R protein CHS3-mediated defense responses in Arabidopsis. PLoS Genet 11(10):e1005584. https://doi.org/10.1371/journal.pgen.1005584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Liu Y, Ye N et al (2015b) AtDsPTP1 acts as a negative regulator in osmotic stress signaling during Arabidopsis seed germination and seedling establishment. J Exp Bot 66(5):1339–1353

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zheng H, Qu CK (2012) Protein tyrosine phosphatase Shp2 (Ptpn11) plays an important role in maintenance of chromosome stability. Cancer Res 72(20):5296–5306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yan J, Qin Q, Zhang J, Chen Y, Zhao L, He K, Hou S (2020) Type one protein phosphatases (TOPPs) contribute to the plant defense response in Arabidopsis. J Integr Plant Biol 62(3):360–377. https://doi.org/10.1111/jipb.12845

  • Lu Y, Qin Y, Zhu D, Shan A, Feng J (2018) Identification and characterization of PP2C phosphatase SjPtc1 in Schistosoma japonicum. Parasitol Int 67(2):213–217

    Article  CAS  PubMed  Google Scholar 

  • Luan S (2002) Tyrosine phosphorylation in plant cell signaling. Proc Natl Acad Sci U S A 99(18):11567–11569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumbreras V, Vilela B, Irar S et al (2010) MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. Plant J 63(6):1017–1030

    Article  CAS  PubMed  Google Scholar 

  • MacKintosh RW, Davies SP, Clarke PR et al (1992) Evidence for a protein kinase cascade in higher plants: 3-Hydroxy-3-methylglutaryl-CoA reductase kinase. Eur J Biochem 209(3):923–931

    Article  CAS  PubMed  Google Scholar 

  • MacRobbie EA (2002) Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure. Proc Natl Acad Sci U S A 99(18):11963–11968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Esparza M, Martínez-Vicente E, González-Párraga P, Ros JM, García-Peñarrubia P, Argüelles JC (2009) Role of trehalose-6P phosphatase (TPS2) in stress tolerance and resistance to macrophage killing in Candida albicans. Int J Med Microbiol 299(6):453–464

    Article  PubMed  CAS  Google Scholar 

  • Máthé C, Garda T, Freytag C, M-Hamvas M (2019) The role of serine-threonine protein phosphatase pp2a in plant oxidative stress signaling—facts and hypotheses. Int J Mol Sci 20(12):E3028. https://doi.org/10.3390/ijms20123028

    Article  CAS  PubMed  Google Scholar 

  • McCurdy DW, Harmon AC (1992) Calcium-dependent protein kinase in the green alga Chara. Planta 188(1):54–61

    Article  CAS  PubMed  Google Scholar 

  • Melcher K, Xu Y, Ng LM et al (2010) Identification and mechanism of ABA receptor antagonism. Nat Struct Mol Biol 17(9):1102–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno T, Nakamura M, Irie K (2018) Induction of Ptp2 and Cmp2 protein phosphatases is crucial for the adaptive response to ER stress in Saccharomyces cerevisiae. Sci Rep 8(1):13078. https://doi.org/10.1038/s41598-018-31413-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monroe-Augustus M, Zolman BK, Bartel B (2003) IBR5, a dual-specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis. Plant Cell 15(12):2979–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moorhead GB, De Wever V, Templeton G, Kerk D (2009) Evolution of protein phosphatases in plants and animals. Biochem J 417(2):401–409

    Article  CAS  PubMed  Google Scholar 

  • Moorhead GB, Trinkle-Mulcahy L, Ulke-Lemée A (2007) Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol 8(3):234–244

    Article  CAS  PubMed  Google Scholar 

  • Mosa KA, Ismail A, Helmy M (2017) Plant stress tolerance. In: Springer briefs in systems biology. Springer, Cham. https://doi.org/10.1007/978-3-319-59379-1

    Chapter  Google Scholar 

  • Muszkieta L, Carrion Sde J, Robinet P, Beau R, Elbim C, Pearlman E, Latgé JP (2014) The protein phosphatase PhzA of A. fumigatus is involved in oxidative stress tolerance and fungal virulence. Fungal Genet Biol 66:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nick P (2008) Microtubules as sensors for abiotic stimuli. In: Nick P (ed) Plant microtubules. Springer, Heidelberg, pp 175–203

    Chapter  Google Scholar 

  • Nick P (2013) Microtubules, signaling and abiotic stress. Plant J 75(2):309–323

    Article  CAS  PubMed  Google Scholar 

  • Norris-Mullins B, Krivda JS, Smith KL, Ferrell MJ, Morales MA (2018) Leishmania phosphatase PP5 is a regulator of HSP83 phosphorylation and essential for parasite pathogenicity. Parasitol Res 117(9):2971–2985

    Article  PubMed  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F, Macek B et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648

    Article  CAS  PubMed  Google Scholar 

  • Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012) Mitogen-activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13(6):7828–7853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • País SM, Téllez-Iñón MT, Capiati DA (2009) Serine/threonine protein phosphatases type 2A and their roles in stress signaling. Plant Signal Behav 4(11):1013–1015

    Article  PubMed  PubMed Central  Google Scholar 

  • Park HS, Chow EW, Fu C, Soderblom EJ, Moseley MA, Heitman J, Cardenas ME (2016) Calcineurin targets involved in stress survival and fungal virulence. PLoS Pathog 12(9):e1005873. https://doi.org/10.1371/journal.ppat.1005873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peti W, Nairn AC, Page R (2013) Structural basis for protein phosphatase 1 regulation and specificity. FEBS J 280(2):596–611

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Yang Y, Yang Y, Zhu N, Gong Y, Zhang C, Li S, Liao D (2014) Ezetimibe suppresses cholesterol accumulation in lipid-loaded vascular smooth muscle cells in vitro via MAPK signaling. Acta Pharmacol Sin 35(9):1129–1136. https://doi.org/10.1038/aps.2014.10

  • Quettier AL, Bertrand C, Habricot Y et al (2006) The phs1-3 mutation in a putative dual-specificity protein tyrosine phosphatase gene provokes hypersensitive responses to abscisic acid in Arabidopsis thaliana. Plant J 47(5):711–719

    Google Scholar 

  • Rahikainen M, Pascual J, Alegre S et al (2016) PP2A phosphatase as a regulator of ROS signaling in plants. Antioxidants 5(1):E8. https://doi.org/10.3390/antiox5010008

    Article  CAS  PubMed  Google Scholar 

  • Reiter W, Klopf E, De Wever V, Anrather D, Petryshyn A, Roetzer A, Niederacher G, Roitinger E, Dohnal I, Görner W, Mechtler K, Brocard C, Schüller C, Ammerer G (2013) Yeast protein phosphatase 2A-Cdc55 regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 chromatin recruitment. Mol Cell Biol 33(5):1057–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigoulot SB, Petzold HE, Williams SP et al (2019) Populus trichocarpa clade A PP2C protein phosphatases: their stress-induced expression patterns, interactions in core abscisic acid signaling, and potential for regulation of growth and development. Plant Mol Biol 100(3):303–317

    Article  CAS  PubMed  Google Scholar 

  • Romá-Mateo C, Sacristán-Reviriego A, Beresford NJ, Caparrós-Martín JA, Culiáñez-Macià FA, Martín H, Molina M, Tabernero L, Pulido R (2011) Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms. Mol Gen Genomics 285(4):341–354

    Article  CAS  Google Scholar 

  • Rudrabhatla P, Rajasekharan R (2002) Developmentally regulated dual-specificity kinase from peanut that is induced by abiotic stresses. Plant Physiol 130(1):380–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudrabhatla P, Reddy MM, Rajasekharan R (2006) Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases. Plant Mol Biol 60(2):293–319

    Article  CAS  PubMed  Google Scholar 

  • Samofalova DA, Karpov PA, Blume YB (2015) Bioinformatic comparison of human and higher plant phosphatomes. Cytol Genet 49(4):207–219

    Article  Google Scholar 

  • Samofalova DO, Karpov PA, Nyporko AY, Blume YB (2011) Reconstruction of the spatial structure of plant phosphatases types 1 and 2a in complexes with okadaic acid. Cytol Genet 45(3):153–162

    Article  Google Scholar 

  • Samofalova DO, Karpov PA, Raevsky AV, Blume YB (2019) Protein phosphatases potentially associated with regulation of microtubules, their spatial structure reconstruction and analysis. Cell Biol Int 43(9):1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Santhanam A, Hartley A, Düvel K, Broach JR, Garrett S (2004) PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p. Eukaryot Cell 3(5):1261–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelzer E (2002) Cell polarization, a crucial process in fungal defense. Trends Plant Sci 7(5):411–415

    Article  CAS  PubMed  Google Scholar 

  • Seo S, Katou S, Seto H et al (2007) The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants. Plant J 49(5):899–909

    Article  CAS  PubMed  Google Scholar 

  • Sheremet YA, Yemets AI, Blume YB (2012) Inhibitors of tyrosine kinases and phosphatases as a tool for the investigation of microtubule role in plant cold response. Cytol Genet 46(1):1–8

    Article  Google Scholar 

  • Shi WL, Liu X, Jia WS, Zhang SQ (2005) Protein tyrosine phosphatases mediate the signaling pathway of stomatal closure in Vicia faba L. J Integr Plant Biol 47(3):319–326

    Article  CAS  Google Scholar 

  • Sines T, Granot-Attas S, Weisman-Welcher S, Elson A (2007) Association of tyrosine phosphatase epsilon with microtubules inhibits phosphatase activity and is regulated by the epidermal growth factor receptor. Mol Cell Biol 27(20):7102–7112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soda N, Singla-Pareek SL, Pareek A (2016) Abiotic stress response in plants: role of cytoskeleton. In: Tuteja N, Gill SS (eds) Abiotic stress response in plants. John Wiley and Sons, Inc., Hoboken, NJ, pp 107–134

    Chapter  Google Scholar 

  • Sugimoto H, Kondo S, Tanaka T et al (2014) Overexpression of a novel Arabidopsis PP2C isoform, AtPP2CF1, enhances plant biomass production by increasing inflorescence stem growth. J Exp Bot 65(18):5385–5400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Charles CH, Lau LF, Tonks NK (1993) MKP1(3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75(3):487–493

    Article  CAS  PubMed  Google Scholar 

  • Takemoto D, Hardham AR (2004) The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136(4):3864–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamnanloo F, Damen H, Jangra R, Lee JS (2018) MAP KINASE PHOSPHATASE1 controls cell fate transition during stomatal development. Plant Physiol 178(1):247–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura S, Hanada M, Ohnishi M et al (2002) Regulation of stress-activated protein kinase signaling pathways by protein phosphatases. Eur J Biochem 269(4):1060–1066

    Article  CAS  PubMed  Google Scholar 

  • Tominga Y, Wayne R, Tung HYL, Tazawa M (1987) Phosphorylation-dephosphorylation is involved in Ca2+-controlled cytoplasmic streaming in Characean cells. Protoplasma 136(2-3):161–169

    Article  Google Scholar 

  • Tournebize R, Andersen SSL, Verde F et al (1997) Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. EMBO J 16(18):5537–5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran HT, Nimick M, Uhrig RG et al (2012) Arabidopsis thaliana histone deacetylase 14 (HDA14) is an α-tubulin deacetylase that associates with PP2A and enriches in the microtubule fraction with the putative histone acetyltransferase ELP3. Plant J 71(2):263–272

    Google Scholar 

  • Trush VV, Tanchuk VY, Cherenok SO et al (2014) Calix[4]arene α-hydroxymethylphosphonic acids as potential inhibitors of protein tyrosine phosphatases. J Org Pharmceut Chem 45(1):39–42

    Article  Google Scholar 

  • Uhrig RG, Labandera AM, Moorhead GB (2013) Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines. Trends Plant Sci 18(9):505–513

    Article  CAS  PubMed  Google Scholar 

  • Ulm R, Ichimura K, Mizoguchi T et al (2002) Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J 21(23):6483–6493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulm R, Revenkova E, di Sansebastiano GP et al (2001) Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis. Genes Dev 15(6):699–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T et al (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51(11):1821–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vedula P, Kashina A (2018) The makings of the ‘actin code’: regulation of actin’s biologicalfunction at the amino acid and nucleotide level. J Cell Sci 131(9):jcs215509. https://doi.org/10.1242/jcs.215509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virshup DM, Shenolikar S (2009) From promiscuity to precision: protein phosphatases get a makeover. Mol Cell 33(5):537–545

    Article  CAS  PubMed  Google Scholar 

  • Walia A, Lee JS, Wasteneys G, Ellis B (2009) Arabidopsis mitogen-activated protein kinase MPK18 mediates cortical microtubule functions in plant cells. Plant J 59(4):565–575

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Kaul A, Sperry AO (2010) TLRR (lrrc67) interacts with PP1 and is associated with a cytoskeletal complex in the testis. Biol Cell 102(3):173–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Liu X, Qian H, Zhang S, Lu L (2016) Calcineurin and calcium channel CchA coordinate the salt stress response by regulating cytoplasmic Ca2+ homeostasis in Aspergillus nidulans. Appl Environ Microbiol 82(11):3420–3430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Ji H, Yuan B et al (2015) ABA signaling is fine-tuned by antagonistic HAB1 variants. Nat Commun 6:8138. https://doi.org/10.1038/ncomms9138

    Article  PubMed  Google Scholar 

  • Ward Y, Gupta S, Jensen P et al (1994) Control of MAP kinase activation by the mitogen induced threonine/tyrosine phosphatase PAC-1. Nature 367(6464):651–654

    Article  CAS  PubMed  Google Scholar 

  • Wong MM, Bhaskara GB, Wen T-N et al (2019) Phosphoproteomics of Arabidopsis highly ABA-induced1 identifies AT-Hook–Like10 phosphorylation required for stress growth regulation. Proc Natl Acad Sci U S A 116(6):2354–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Fu HH, Gupta R, Luan S (1998) Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis. Plant Cell 10(5):849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaish MW (2017) Epigenetic modifications associated with abiotic and biotic stresses in plants: an implication for understanding plant evolution. Front Plant Sci 8:1983. https://doi.org/10.3389/fpls.2017.01983

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Jiang J, Mayr C, Hahn M, Ma Z (2013a) Involvement of two type 2C protein phosphatases BcPtc1 and BcPtc3 in the regulation of multiple stress tolerance and virulence of Botrytis cinerea. Environ Microbiol 15(10):2696–2711

    CAS  PubMed  Google Scholar 

  • Yang Q, Tonks NK (1991) Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4,1, ezrin and talin. Proc Natl Acad Sci U S A 88(14):5949–5953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Yu F, Yin Y, Ma Z (2013b) Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi-stress tolerance in Botrytis cinerea. PLoS One 8(4):e61307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Hua J (2004) A haplotype-specific resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16(4):1060–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yemets A, Sheremet Y, Vissenberg K et al (2008) Effects of tyrosine kinase and phosphatase inhibitors on microtubules in Arabidopsis root cells. Cell Biol Int 32(6):630–637

    Article  CAS  PubMed  Google Scholar 

  • Yoon JT, Ahn HK, Pai HS (2018) The subfamily II catalytic subunits of protein phosphatase 2A (PP2A) are involved in cortical microtubule organization. Planta 248(6):1551–1567

    Article  CAS  PubMed  Google Scholar 

  • Yoshida R, Hobo T, Ichimura K et al (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43(12):1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Zaïdi I, Ebel C, Touzri M et al (2010) TMKP1 is a novel wheat stress responsive MAP kinase phosphatase localized in the nucleus. Plant Mol Biol 73(3):325–338

    Article  PubMed  CAS  Google Scholar 

  • Zeng K, Bastos RN, Barr FA, Gruneberg U (2010) Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. J Cell Biol 191(7):1315–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Joyce BR, Sullivan WJ Jr, Nussenzweig V (2013) Translational control in plasmodium and toxoplasma parasites. Eukaryot Cell 12(2):161–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S (2008) Mitogen-activated protein kinase cascades in plant intracellular signaling. Ann Plant Rev 33:100–136

    Google Scholar 

  • Zhou S, Chen Q, Sun Y, Li Y (2017) Histone H2B monoubiquitination regulates salt stress-induced microtubule depolymerization in Arabidopsis. Plant Cell Environ 40(8):1512–1530

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Qian W, Hua J (2010) Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathogens 6(4):e1000844. https://doi.org/10.1371/journal.ppat.1000844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou B, Yang DL, Shi Z et al (2014) Monoubiquitination of histone 2B at the disease resistance gene locus regulates its expression and impacts immune responses in Arabidopsis. Plant Physiol 165(1):309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav B. Blume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samofalova, D.O., Karpov, P.A., Raevsky, A.V., Blume, Y.B. (2020). Interplay of Protein Phosphatases with Cytoskeleton Signaling in Response to Stress Factors in Plants. In: Pandey, G.K. (eds) Protein Phosphatases and Stress Management in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-48733-1_14

Download citation

Publish with us

Policies and ethics