Skip to main content

Theory of Polaritonic Chemistry

  • Chapter
  • First Online:
Polaritonic Chemistry

Part of the book series: Springer Theses ((Springer Theses))

  • 402 Accesses

Abstract

In the previous chapter we embraced the complexity of organic molecules by including arbitrary PES in our description of strong coupling with the aim of building a general theory of polaritonic chemistry. In this chapter we generalize these results and analyze the approach of PoPES. We study the general light–matter Hamiltonian from the point of view presented in Chap. 3, i.e., by separating the electronic and photonic DoF from the nuclear coordinates. In Sect. 4.2 we explicitly analyze this in a complete and general way, also presenting a conceptual molecular energy landscape that presents some kind of excited-state process that can be strongly influenced in strong coupling. Then, in Sect. 4.3 we present the potential of the PoPES picture for describing collective phenomena. We show how we can use the spin operators used in the Tavis–Cummings model (see Sect. 2.3) to understand such a complex system. The ensemble of N molecules is formally identical to a single “supermolecule” that encompass the internal DoF of all molecules. This immediately leads to novel phenomena such as the collective protection effect and collective conical intersections, both discussed in detail in this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buhmann SY (2007) Casimir-Polder forces on atoms in the presence of magnetoelectric bodies. Thesis (PhD), Friedrich-Schiller-Universität Jena

    Google Scholar 

  2. Spano FC (2015) Optical microcavities enhance the exciton coherence length and eliminate vibronic coupling in J-aggregates. J Chem Phys 142

    Google Scholar 

  3. Feist J, Galego J, Garcia-Vidal FJ (2018) Polaritonic chemistry with organic molecules. ACS Photonics 5:205

    Google Scholar 

  4. Lidzey DG, Bradley DDC, Armitage A, Walker S, Skolnick MS (2000) Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities. Science 288:1620

    Google Scholar 

  5. Rodriguez SRK, Feist J, Verschuuren MA, Garcia Vidal FJ, Gómez Rivas J (2013) Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation. Phys Rev Lett 111

    Google Scholar 

  6. Zengin G, Wersäll M, Nilsson S, Antosiewicz TJ, Käll M, Shegai T (2015) Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys Rev Lett 114:157401

    Article  ADS  Google Scholar 

  7. Chikkaraddy R, de Nijs B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ (2016) Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535:127

    Article  ADS  Google Scholar 

  8. Schwartz T, Hutchison JA, Léonard J, Genet C, Haacke S, Ebbesen TW (2013) Polariton dynamics under strong light-molecule coupling. ChemPhysChem 14:125

    Article  Google Scholar 

  9. Velha P, Picard E, Charvolin T, Hadji E, Rodier J, Lalanne P, Peyrade D (2007) Ultra-high Q/V Fabry-Perot microcavity on SOI substrate. Opt Express 15:16090

    Article  ADS  Google Scholar 

  10. Akahane Y, Asano T, Song B-S, Noda S (2003) High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425:944

    Article  ADS  Google Scholar 

  11. Luk HL, Feist J, Toppari JJ, Groenhof G (2017) Multiscale molecular dynamics simulations of polaritonic chemistry. J Chem Theory Comput 13:4324

    Article  Google Scholar 

  12. Garraway BM (2011) The Dicke model in quantum optics: Dicke model revisited. Philos Trans R Soc A Math Phys Eng Sci 369:1137

    Google Scholar 

  13. Herrera F, Spano FC (2016) Cavity-controlled chemistry in molecular ensembles. Phys Rev Lett 116:238301

    Article  ADS  Google Scholar 

  14. Herrera F, Spano FC (2018) Theory of nanoscale organic cavities: the essential role of vibration-photon dressed states. ACS Photonics 5:65

    Article  Google Scholar 

  15. Wu N, Feist J, Garcia-Vidal FJ (2016) When polarons meet polaritons: exciton-vibration interactions in organic molecules strongly coupled to confined light fields. Phys Rev B 94:195409

    Article  ADS  Google Scholar 

  16. Kasha M (1963) Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat Res 20:55

    Article  ADS  Google Scholar 

  17. Worth GA, Cederbaum LS (2004) Beyond Born-Oppenheimer: molecular dynamics through a conical intersection. Annu Rev Phys Chem 55:127

    Article  ADS  Google Scholar 

  18. Levine BG, Martínez TJ (2007) Isomerization through conical intersections. Annu Rev Phys Chem 58:613

    Article  ADS  Google Scholar 

  19. Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections: electronic structure, dynamics and spectroscopy. Advanced series in physical chemistry, vol 15. World Scientific Publishing Co. Pte. Ltd

    Google Scholar 

  20. Domcke W, Yarkony DR (2012) Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. Annu Rev Phys Chem 63:325

    Article  ADS  Google Scholar 

  21. Vendrell O (2018) Collective Jahn-Teller interactions through light-matter coupling in a cavity. Phys Rev Lett 121:253001

    Article  ADS  Google Scholar 

  22. Pino JD, Feist J, Garcia-Vidal FJ (2015) Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode. New J Phys 17:53040

    Article  Google Scholar 

  23. Sáez-Blázquez R, Feist J, Fernández-Domínguez A, García-Vidal F (2018) Organic polaritons enable local vibrations to drive long-range energy transfer. Phys Rev B 97:241407

    Article  ADS  Google Scholar 

  24. Ribeiro RF, Martínez-Martínez LA, Du M, Campos-Gonzalez-Angulo J, Yuen-Zhou J (2018) Polariton chemistry: controlling molecular dynamics with optical cavities. Chem Sci 9:6325

    Article  Google Scholar 

  25. Ufimtsev IS, Martinez TJ (2009) Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J Chem Theory Comput 5:2619

    Google Scholar 

  26. Titov AV, Ufimtsev IS, Luehr N, Martinez TJ (2013) Generating efficient quantum chemistry codes for novel architectures. J Chem Theory Comput 9:213

    Article  Google Scholar 

  27. Sisto A, Glowacki DR, Martinez TJ (2014) Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework. Acc Chem Res 47:2857

    Article  Google Scholar 

  28. Sisto A, Stross C, van der Kamp MW, O’Connor M, McIntosh-Smith S, Johnson GT, Hohenstein EG, Manby FR, Glowacki DR, Martinez TJ (2017) Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model. Phys Chem Chem Phys 19:14924

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Galego Pascual .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galego Pascual, J. (2020). Theory of Polaritonic Chemistry. In: Polaritonic Chemistry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-48698-3_4

Download citation

Publish with us

Policies and ethics