Skip to main content

Origin of Fatty Acids and Influence of Nutritional Factors on Milk Fat

  • Chapter
  • First Online:
Advanced Dairy Chemistry, Volume 2

Abstract

Ruminant milk fat is a complex lipid due to the large impact of the rumen on absorbed nutrients and unique aspects of the physiology of milk fat synthesis in the mammary gland. Approximately 60% of milk fatty acids originate from the blood and include a large amount of saturated and trans fatty acids that originate from microbial metabolism of dietary unsaturated fatty acids and odd- and branched-chain fatty acids from microbial synthesis. The remaining fatty acids are made in the mammary gland and include a short- and medium-chain fatty acids (<16 carbons) due to unique characteristics of the de novo synthesis pathway. Milk fat is the most variable component of milk and is largely influenced by the diet. Milk fat can be reduced by ruminal synthesis of bioactive trans fatty acids and can be increased by feeding certain rumen-inert fats. Milk fat is also highly heritable and follows a seasonal pattern. Past research provides a strong understanding of the biochemistry and physiology of milk fat synthesis that are reviewed. However, the complexity of the rumen microbial ecosystem makes it difficult to predict the impact of diet and other factors on rumen metabolism of unsaturated fatty acids and resulting effects on milk fat synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACBP:

Acyl-CoA-binding protein

ACC:

Acetyl-CoA carboxylase

ACP:

Acyl carrier protein

Akt:

Serine/threonine protein kinase

AMP:

Adenosine monophosphate

ATP:

Adenosine triphosphate

cAMP:

Cyclic AMP

CDP:

Cytidine diphosphate

CLA:

Conjugated linoleic acid

CMP:

Cytidine monophosphate

CoASH:

Coenzyme A

CTP:

Cytidine Triphosphate

DGAT:

Diacylglycerol acyltransferase

DHA:

Docosahexaenoic acid

DM:

Dry matter

EPA:

Eicosapentaenoic acid

FABP:

Fatty acid-binding protein

FAT:

Fatty acid translocator

GLUT :

Glucose transporter

GPAT:

Glycerol phosphate acyl transferase

HMP:

Hexose monophosphate pathway

IGF:

Insulin-like growth factor

LPL:

Lipoprotein lipase

NADH + H+:

Reduced nicotine adenine dinucleotide

NADPH + H+:

Reduced nicotine adenine dinucleotide phosphate

NEFA:

Non-esterified fatty acids (also called “free” fatty acids, FFA)

OAA:

Oxaloacetic acid

PFK:

Phosphofructokinase

PPi:

Inorganic Pyrophosphate

SCD:

Stearoyl-CoA desaturase

sn:

Stereospecific numbering (of positions on asymmetric glycerol)

SREBPs:

Sterol regulatory element-binding proteins

TAG:

Triacylglycerol

VLDL:

Very low-density lipoproteins

References

  • AbuGhazaleh, A. A., Schingoethe, D. J., Hippen, A. R., Kalscheur, K. F. & Whitlock, L. A. (2002). Fatty acid profiles of milk and rumen digesta from cows fed fish oil, extruded soybeans or their blend. Journal of Dairy Science, 85, 2266–2276.

    Article  CAS  PubMed  Google Scholar 

  • Ahrné, L., Björck, L., Raznikiewicz, T. & Claesson, O. (1980). Glycerol ether in colostrum and milk from cow, goat, pig and sheep. Journal of Dairy Science, 63, 741–745.

    Article  Google Scholar 

  • ALJohani, A. M., Syed, D. N. & Ntambi, J. M. (2017). Insights into stearoyl-CoA desaturase-1 regulation of systemic metabolism. Trends in Endocrinology and Metabolism, 28, 831–842.

    Article  CAS  PubMed  Google Scholar 

  • Allred, J. B. & Reilly, K. E. (1997). Short-term regulation of acetyl CoA carboxylase in tissues of higher animals. Progress in Lipid Research, 35, 371–385.

    Article  Google Scholar 

  • Annison, E. F., Linzell, J. L., Fazakerley, S. & Nichols, B. W. (1967). The oxidation and utilization of palmitate, stearate, oleate and acetate by the mammary gland of the fed goat in relation to their overall metabolism, and the role of plasma phospholipids and neutral lipids in milk-fat synthesis. Biochemical Journal, 102, 637–647.

    Article  CAS  PubMed Central  Google Scholar 

  • Ashes, J. R., St. Vincent Welch, P., Gulati, S. K., Scott, T. W., Brown, G. H. & Blakeley, S. (1992). Manipulation of the fatty acid composition of milk by feeding protected canola seeds. Journal of Dairy Science, 75, 1090–1096.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin, R. L. (1995). Modeling ruminant digestion and metabolism (pp. 370–387). London: Chapman and Hall.

    Google Scholar 

  • Baldwin, R. L., Smith, N. E., Taylor, J. & Sharp, M. (1980). Manipulating metabolic parameters to improve growth rate and milk secretion. Journal of Animal Science, 51, 1416–1428.

    Article  CAS  PubMed  Google Scholar 

  • Ballard, F. J., Hanson, R. W. & Kronfeld, D. S. (1969). Gluconeogenesis and lipogenesis in tissue from ruminant and nonruminant animals. Federation Proceedings, 28, 218–231.

    CAS  PubMed  Google Scholar 

  • Banks, W., Clapperton, J. L. & Ferrie, M. E. (1976). Effect of feeding fat to dairy cows receiving a fat-deficient basal diet. II. Fatty acid composition of the milk fat. Journal of Dairy Research, 43, 219–227.

    Article  CAS  Google Scholar 

  • Barbano, D. M. & Sherbon, J. W. (1980). Polyunsaturated protected lipid: Effect on triglyceride molecular weight distribution. Journal of Dairy Science, 63, 731–740.

    Article  CAS  Google Scholar 

  • Barber, M. C. & Travers, M. T. (1998). Elucidation of a promoter activity that directs the expression of acetyl-coa carboxylase alpha with an alternative n-terminus in a tissue-restricted fashion. Biochemical Journal, 333, 17–25.

    Article  CAS  PubMed Central  Google Scholar 

  • Barber, M. C., Clegg, R. A., Travers, M. T. & Vernon, R. G. (1997). Review. Lipid metabolism in the lactating mammary gland. Biochimica et Biophysica Acta, 1347, 101–126.

    Article  CAS  PubMed  Google Scholar 

  • Barber, M. C., Pooley, L. & Travers, M. T. (2001). Developmental regulation of alternatively spliced acetyl-coa carboxylase-alphamrnas encoding isozymes with or without an eight amino acid domain upstream of the ser-1200 phosphorylation motif in the mammary gland. Journal of Molecular Endocrinology, 27, 349–356.

    Article  CAS  PubMed  Google Scholar 

  • Barber, M. C., Vallance, A. J., Kennedy, H. T. & Travers, M. T. (2003). Induction of transcripts derived from promoter iii of the acetyl-coa carboxylase-alpha gene in mammary gland is associated with recruitment of srebp-1 to a region of the proximal promoter defined by a dnase i hypersensitive site. Biochemical Journal, 375, 489–501.

    Google Scholar 

  • Barber, M., Price, N. & Travers, M. (2005). Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochimica et Biophysica Acta, 1733, 1–28.

    Article  CAS  PubMed  Google Scholar 

  • Bauman, D. E. & Currie, W. B. (1980). Partitioning of nutrients during pregnancy and lactation: A review of mechanisms involving homeostasis and homeorhesis. Journal of Dairy Science, 63, 1514–1529.

    Article  CAS  PubMed  Google Scholar 

  • Bauman, D. E. & Davis, C. L. (1974). Biosynthesis of milk fat. In B. L. Larson & V. R. Smith (Eds.), Lactation (Vol. II, pp. 31–75). NewYork: Academic Press.

    Google Scholar 

  • Bauman, D. E. & Griinari, J. M. (2001). Regulation and nutritional manipulation of milk fat: Low-fat milk syndrome. Livestock Production Science, 70, 15–29.

    Article  Google Scholar 

  • Bauman, D. E. & Griinari, J. M. (2003). Nutritional regulation of milk fat synthesis. Annual Review of Nutrition, 23, 203–227.

    Google Scholar 

  • Bauman, D. E., Brown, R. E. & Davis, C. L. (1970). Pathways of fatty acid synthesis and reducing equivalent generation in mammary gland of rat, sow, and cow. Archives of Biochemistry and Biophysics, 140, 237–244.

    Google Scholar 

  • Bauman, D. E., Harvatine, K. J. & Lock, A. L. (2011). Nutrigenomics, rumen-derived bioactive fatty acids, and the regulation of milk fat synthesis. Annual Review of Nutrition, 31, 299–319.

    Article  CAS  PubMed  Google Scholar 

  • Beals, E., Kamita, S. G., Sacchi, R., Demmer, E., Rivera, N., Rogers-Soeder, T. S., Gertz, E. R., Van Loan, M. D., German, J. B., Hammock, B. D., Smilowitz, J. T. & Zivkovic, A. M. (2019). Addition of milk fat globule membrane-enriched supplement to a high-fat meal attenuates insulin secretion and induction of soluble epoxide hydrolase gene expression in the postprandial state in overweight and obese subjects. Journal of Nutritional Science, 8, e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulieu, A. D. & Palmquist, D. L. (1995). Differential effects of high fat diets on fatty acid composition in milk of Jersey and Holstein cows. Journal of Dairy Science, 78, 1336–1344.

    Google Scholar 

  • Bernert, J. T., Jr. & Sprecher, H. (1979). Factors regulating the elongation of palmitic and stearic acid by rat liver microsomes. Biochimica et Biophysica Acta, 574, 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Bickerstaffe, R. & Annison, E. F. (1970). The desaturase activity of goat and sow mammary tissue. Comparative Biochemistry and Physiology, 35, 653–665.

    Article  CAS  Google Scholar 

  • Bickerstaffe, R. & Annison, E. F. (1971). Triglyceride synthesis in goat and sow mammary tissue. International Journal of Biochemistry, 2, 153–162.

    Article  CAS  Google Scholar 

  • Bickerstaffe, R. & Annison, E. F. (1974). The metabolism of glucose, acetate, lipids and amino acids in lactating dairy cows. Journal of Agriculture Science (Cambridge), 82, 71–85.

    Article  Google Scholar 

  • Bishop, C., Davies, T., Glascock, R. F. & Welch, V. A. (1969). A further study of bovine serum lipoproteins and an estimation of their contribution to milk fat. Biochemical Journal, 113, 629–633.

    Article  CAS  PubMed Central  Google Scholar 

  • Bitman, J. & Wood, D. L. (1990). Changes in milk fat phospholipids during lactation. Journal of Dairy Science, 73, 1208–1216.

    Article  CAS  PubMed  Google Scholar 

  • Borthwick, A. C., Edgell, N. J. & Denton, R. M. (1987). Use of rapid gel-permeation chromatography to explore the inter-relationships between polymerization, phosphorylation and activity of acetyl-CoA carboxylase. Effects of insulin and phosphorylation by cyclic AMP-dependent protein kinase. Biochemical Journal, 241, 773–782.

    Article  CAS  PubMed Central  Google Scholar 

  • Cant, J. P., DePeters, E. J. & Baldwin, R. L. (1993). Mammary uptake of energy metabolites in dairy cows fed fat and its relationship to milk protein depression. Journal of Dairy Science, 76, 2254–2265.

    Article  CAS  Google Scholar 

  • Carlson, C. A. & Kim, K. H. (1974). Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. Archives of Biochemistry and Biophysics, 164, 478–489.

    Article  CAS  PubMed  Google Scholar 

  • Castberg, H. B., Egelrud, T., Solberg, P. & Olivecrona, T. (1975). Lipases in bovine milk and the relationship between the lipoprotein lipase and tributyrate hydrolyzing activities in cream and skim-milk. Journal of Dairy Research, 42, 255–266.

    Article  CAS  Google Scholar 

  • Cavaletto, M., Giuffrida, M. G. & Conti, A. (2008). Milk fat globule membrane components – A proteomic approach. Advances in Experimental Medicine and Biology, 606, 129–141.

    Article  CAS  PubMed  Google Scholar 

  • Chaiyabutr, N., Faulkner, A. & Peaker, M. (1980). The utilization of glucose for the synthesis of milk components in the fed and starved lactating goat in vivo. Biochemical Journal, 186, 301–308.

    Article  CAS  PubMed Central  Google Scholar 

  • Chamberlain, M. B., Pareas, J. W., Juchem, S. O., DePeters, E. J., Getachew, G., Taylor, S. J., et al. (2016). Feeding lactating Holstein cows a lipid source high in palmitic acid changes the fatty acid composition and thermal properties of lipids in milk and butter. Professional Animal Scientists, 32, 672–680.

    Article  Google Scholar 

  • Chang, J. H. P., Lunt, D. K. & Smith, S. B. (1992). Fatty acid composition and fatty acid elongase and stearoyl-CoA desaturase activities in tissues of steers fed high oleate sunflower seed. Journal of Nutrition, 122, 2074–2080.

    Article  CAS  Google Scholar 

  • Chouinard, P. W., Girard, V. & Brisson, G. J. (1998). Fatty acid profile and physical properties of milk fat from cows fed calcium salts of fatty acids with varying unsaturation. Journal of Dairy Science, 81, 471–481.

    Article  CAS  PubMed  Google Scholar 

  • Christie, W. W. (1985). Structure of the triacyl-sn-glycerols in the plasma and milk of the rat and rabbit. Journal of Dairy Research, 52, 219–222.

    Article  CAS  Google Scholar 

  • Clarenburg, R. & Chaikoff, I. L. (1966). Origin of milk cholesterol in the rat: Dietary versus endogenous sources. Journal of Lipid Research, 7, 27–37.

    CAS  PubMed  Google Scholar 

  • Clarke, B. A. & Clarke, S. D. (1982). Polymer-protomer transition of acetyl-CoA carboxylase as a regulator of lipogenesis in rat liver. Archives of Biochemistry and Biophysics, 218, 92–100.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, R. A. & Mashek, D. G. (2011). Mammalian triacylglycerol metabolism: Synthesis, lipolysis, and signaling. Chemical Reviews, 111, 6359–6386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, S. M. & Grigor, M. R. (1980). Fatty acid specificities of microsomal acyltransferases esterifying positions-1 and -2 of acylglycerols in mammary glands from lactating rats. Biochemical Journal, 187, 289–295.

    Article  CAS  PubMed Central  Google Scholar 

  • Dahl, G. E., Buchanan, B. A. & Tucker, H. A. (2000). Photoperiodic effects on dairy cattle: A review. Journal of Dairy Science, 83, 885–893.

    Article  CAS  PubMed  Google Scholar 

  • Davis, C. L. & Brown, R. E. (1970). Low-fat milk syndrome. In A. T. Phillipson (Ed.), Physiology of digestion and metabolism in the ruminant (pp. 545–565). Newcastle-upon-Tyne: Oriel Press.

    Google Scholar 

  • DePeters, E. J., Medrano, J. F. & Reed, B. A. (1995). Fatty acid composition of milk fat from three breeds of dairy cattle. Canadian Journal of Animal Science, 75, 267–269.

    Article  CAS  Google Scholar 

  • Dhiman, T. R., Anand, G. R., Satter, L. D. & Pariza, M. W. (1999). Conjugated linoleic acid content of milk from cows fed different diets. Journal of Dairy Science, 82, 2146–2156.

    Article  CAS  PubMed  Google Scholar 

  • Dils, R. R. (1986). Comparative aspects of milk fat synthesis. Journal of Dairy Science, 69, 904–910.

    Article  CAS  PubMed  Google Scholar 

  • Dodds, P. F., Guzman, M. G. F., Chalberg, S. C., Anderson, G. J. & Kumar, S. (1981). Acetoacetyl-CoA reductase activity of lactating bovine mammary fatty acid synthase. Journal of Biological Chemistry, 256, 6282–6290.

    CAS  Google Scholar 

  • Drackley, J. K., Overton, T. R., Ortiz-Gonzalez, G., Beaulieu, A. D., Barbano, D. M., Lynch, J. M. & Perkins, E. G. (2007). Responses to increasing amounts of high-oleic sunflower fatty acids infused into the abomasum of lactating dairy cows. Journal of Dairy Science, 90, 5165–5175.

    Article  CAS  PubMed  Google Scholar 

  • Duchemin, S. I., Visker, M. H., Van Arendonk, J. A. & Bovenhuis, H. (2014). A quantitative trait locus on bos taurus autosome 17 explains a large proportion of the genetic variation in de novo synthesized milk fatty acids. Journal of Dairy Science, 97, 7276–7285.

    Article  CAS  PubMed  Google Scholar 

  • Emanuelson, M., Murphy, M. & Lindberg, J.-E. (1991). Effects of heat-treated and untreated full-fat rapeseed and tallow on rumen metabolism, digestibility, milk composition and milk yield in lactating cows. Animal Feed Science and Technology, 34, 291–309.

    Article  Google Scholar 

  • Enjalbert, F., Nicot, M.-C., Bayourthe, C. & Moncoulon, R. (1998). Duodenal infusions of palmitic, stearic or oleic acids differently affect mammary gland metabolism of fatty acids in lactating dairy cows. Journal of Nutrition, 128, 1525–1532.

    Article  CAS  Google Scholar 

  • Enjalbert, F., Nicot, M. C., Bayourthe, C. & Moncoulon, R. (2000). Effects of duodenal infusions of palmitic, stearic, or oleic acids on milk composition and physical properties of butter. Journal of Dairy Science, 83, 1428–1433.

    Google Scholar 

  • Faulkner, A. & Pollock, H. T. (1989). Changes in the concentration of metabolites in milk from cows fed on diets supplemented with soyabean oil or fatty acids. Journal of Dairy Research, 56, 179–183.

    Article  Google Scholar 

  • Fauteux, M. C., Gervais, R., Rico, D. E., Lebeuf, Y. & Chouinard, P. Y. (2016). Production, composition, and oxidative stability of milk highly enriched in polyunsaturated fatty acids from dairy cows fed alfalfa protein concentrate or supplemental vitamin E. Journal of Dairy Science, 99, 4411–4426.

    Article  CAS  PubMed  Google Scholar 

  • Forsberg, N. E., Baldwin, R. L. & Smith, N. E. (1985). Roles of lactate and its interactions with acetate in maintenance and biosynthesis in bovine mammary tissue. Journal of Dairy Science, 68, 2550–2556.

    Article  CAS  PubMed  Google Scholar 

  • Garton, G. A. (1963). The composition and biosynthesis of milk lipids. Journal of Lipid Research, 4, 237–254.

    CAS  PubMed  Google Scholar 

  • German, J. B., Morand, L., Dillard, C. J. & Xu, R. (1997). Milk fat composition: Targets for alteration of function and nutrition. In R. A. S. Welch, D. J. W. Burns, S. R. Davis, A. I. Popay & C. G. Prosser (Eds.), Milk Composition, Production and Biotechnology (pp. 35–72). Wallingford: CAB International.

    Google Scholar 

  • Glascock, R. F., Duncombe, W. G. & Reinius, L. R. (1956). Studies on the origin of milk fat. 2. The secretion of dietary long-chain fatty acids in milk fat by ruminants. Biochemical Journal, 62, 535–541.

    Article  CAS  PubMed Central  Google Scholar 

  • Glascock, R. F., Welch, V. A., Bishop, C., Davies, T., Wright, E. W. & Noble, R. C. (1966). An investigation of serum lipoproteins and of their contribution to milk fat in the dairy cow. Biochemical Journal, 98, 149–156.

    Google Scholar 

  • Glascock, R. F., Smith, R. W. & Walsh, A. (1983). Partition of circulating triglycerides between formation of milk fat and other metabolic pathways in sheep. Journal of Agricultural Sciences (Cambridge), 101, 33–38.

    CAS  Google Scholar 

  • Glasser, F., Schmidely, P., Sauvant, D. & Doreau, M. (2008). Digestion of fatty acids in ruminants: A meta-analysis of flows and variation factors: 2. C18 fatty acids. Animal, 2, 691–704.

    Article  CAS  PubMed  Google Scholar 

  • Gregolin, C., Ryder, E., Warner, R. C., Kleinschmidt, A. K. & Lane, M. (1966). Liver acetyl CoA carboxylase: The dissociation-reassociation process and its relation to catalytic activity. Proceedings of the National Academy of Sciences, 56, 1751–1758.

    Article  CAS  Google Scholar 

  • Grevengoed, T. J., Klett, E. L. & Coleman, R. A. (2014). Acyl-CoA metabolism and partitioning. Annual Review of Nutrition, 34, 1–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griinari, J. M., McGuire, M. A., Dwyer, D. A., Bauman, D. E. & Palmquist, D. L. (1997). Role of insulin in the regulation of milk fat synthesis in dairy cows. Journal of Dairy Science, 80, 176–1084.

    Article  Google Scholar 

  • Griinari, J. M., Corl, B. A., Lacy, S. H., Chouinard, P. Y., Nurmela, K. V. & Bauman, D. E. (2000). Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by delta(9)-desaturase. Journal of Nutrition, 130, 2285–2291.

    Google Scholar 

  • Grisart, B., Coppieters, W., Farnir, F., Karim, L., Ford, C., Berzi, P., Cambisano, N., Mni, M., Reid, S., Simon, P., Spelman, R., Georges, M. & Snell, R. (2002). Positional candidate cloning of a qtl in dairy cattle: Identification of a missense mutation in the bovine dgat1 gene with major effect on milk yield and composition. Genome Research, 12, 222–231.

    Article  CAS  PubMed  Google Scholar 

  • Grisart, B., Farnir, F., Karim, L., Cambisano, N., Kim, J. J., Kvasz, A., Mni, M., Simon, P., Frere, J. M., Coppieters, W. & Georges M. (2004). Genetic and functional confirmation of the causality of the dgat1 k232a quantitative trait nucleotide in affecting milk yield and composition. Proceedings of the National Academy of Sciences of the United States of America 101(8):2398–2403.

    Google Scholar 

  • Grummer, R. R. (1991). Effect of feed on the composition of milk fat. Journal of Dairy Science, 74, 3244–3257.

    Article  CAS  PubMed  Google Scholar 

  • Grunnet, I. & Knudsen, J. (1981). Direct transfer of fatty acids synthesized ‘de novo’ from fatty acid synthetase into triacylglycerols without activation. Biochemical and Biophysical Research Communications, 100, 629–636.

    Article  CAS  PubMed  Google Scholar 

  • Ha, J. K. & Lindsay, R. C. (1990). Method for the quantitative analysis of volatile free and total branched-chain fatty acids in cheese and milk fat. Journal of Dairy Science, 73, 1988–1999.

    Article  CAS  Google Scholar 

  • Ha, J., Daniel, S., Broyles, S. S. & Kim, K. H. (1994). Critical phosphorylation sites for acetyl-CoA carboxylase activity. Journal of Biological Chemistry, 269, 22162–22168.

    Google Scholar 

  • Hagemeister, H., Precht, D., Franzen, M. & Barth, C. A. (1991). α-Linolenic acid transfer into milk fat and its elongation by cows. Fett Wissenschaft und Technologie, 93, 387–391.

    Google Scholar 

  • Hajri, T. & Abumrad, N. A. (2002). Fatty acid transport across membranes: Relevance to nutrition and metabolic pathology. Annual Review of Nutrition, 22, 383–415.

    Article  CAS  PubMed  Google Scholar 

  • Hamosh, M., Clary, T. R., Chernick, W. W. & Scow, R. O. (1970). Lipoprotein lipase activity of adipose and mammary tissue and plasma triglyceride in pregnant and lactating rats. Biochimica et Biophysica Acta, 210, 473–482.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, J. K. & Knudsen, J. (1980). Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of butyrate and hexanoate by lactating cow mammary gland fatty acid synthetase. Biochemical Journal, 186, 287–294.

    Article  CAS  PubMed Central  Google Scholar 

  • Hansen, H. O. & Knudsen, J. (1987). Effect of exogenous long-chain fatty acids on individual fatty acid synthesis by dispersed ruminant mammary gland cells. Journal of Dairy Science, 70, 1350–1354.

    Google Scholar 

  • Hansen, H. O., Grunnet, I. & Knudsen, J. (1984a). Triacylglycerol synthesis in goat mammary gland. The effect of ATP, Mg2+ and glycerol 3-phosphate on the esterification of fatty acids synthesized de novo. Biochemical Journal, 220, 513–519.

    Article  CAS  PubMed Central  Google Scholar 

  • Hansen, H. O., Grunnet, I. & Knudsen, J. (1984b). Triacylglycerol synthesis in goat mammary gland. Factors influencing the esterification of fatty acids synthesized de novo. Biochemical Journal, 220, 521–527.

    Article  CAS  PubMed Central  Google Scholar 

  • Hansen, H. O., Jensen, S. S. & Knudsen, J. (1986). Absence of monoacylglycerol pathway for triacylglycerol synthesis in goat mammary gland. Biochemical Journal, 238, 173–176.

    Google Scholar 

  • Harvatine, K. J., Boisclair, Y. R. & Bauman, D. E. (2009). Recent advances in the regulation of milk fat synthesis. Animal, 3, 40–54.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, B. J., Pryce, J., Chamberlain, A. J., Bowman, P. J. & Goddard, M. E. (2010). Genetic architecture of complex traits and accuracy of genomic prediction: Coat colour, milk-fat percentage, and type in holstein cattle as contrasting model traits. PLoS Genetics, 6, e1001139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hermansen, J. E. (1995). Prediction of milk fatty acid profile in dairy cows fed dietary fat differing in fatty acid composition. Journal of Dairy Science, 78, 872–879.

    Article  CAS  PubMed  Google Scholar 

  • Hilditch, T. P. (1947). The chemical constitution of natural fats (2nd ed.). London: Wiley.

    Google Scholar 

  • Hillgartner, F. B., Salati, L. M. & Goodridge, A. G. (1995). Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiological Reviews, 75, 47–76.

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra, D., Maier, O., van der Wouden, J. M., Slimane, T. A. & van Ijzendoorn, C. D. (2003). Membrane dynamics and cell polarity: The role of sphingolipids. Journal of Lipid Research, 44, 869–877.

    Article  CAS  PubMed  Google Scholar 

  • Holland, R. & Hardie, D. G. (1985). Both insulin and epidermal growth factor stimulate fatty acid synthesis and increase phosphorylation of acetyl-CoA carboxylase and ATP-citrate lyase inisolated hepatocytes. FEBS Letters, 181, 308–312.

    Article  CAS  PubMed  Google Scholar 

  • Hurtaud, C., Lemosquet, S. & Rulquin, H. (2000). Effect of graded duodenal infusions of glucose on yield and composition of milk from dairy cows. 2. Diets base on grass silage. Journal of Dairy Science, 83, 2952–2962.

    Article  CAS  PubMed  Google Scholar 

  • Infante, J. P. & Kinsella, J. E. (1976). Phospholipid synthesis in mammary tissue. Choline and ethanolamine kinases: Kinetic evidence for two discrete active sites. Lipids, 11, 727–735.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, T. C. (1998). Fatty acid composition of milk from Holstein cows fed oleamide or canola oil. Journal of Dairy Science, 81, 794–800.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, T. C. & Harvatine, K. J. (2014). Lipid feeding and milk fat depression. Veterinary Clinics of North America. Food Animal Practice, 30, 623–642.

    Article  Google Scholar 

  • Jenkins, T. C., Wallace, R. J., Moate, P. J. & Mosley, E. E. (2008). Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 86, 397–412.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, R. G. (2002). Invited review: The composition of bovine milk lipids: January 1995 to December 2000. Journal of Dairy Science, 85, 295–350.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, R. G. & Newburg, D. S. (1995). Milk lipids. B. Bovine milk lipids. In R. G. Jensen (Ed.), Handbook of Milk Composition (pp. 543–575). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Jordan, W. H. & Jenter, C. G. (1897). The source of milk fat (Bulletin 132) (pp. 455–488). Geneva: New York Agricultural Experiment Station.

    Google Scholar 

  • Joshi, A. K., Witkowski, A. & Smith, S. (1997). Mapping of functional interactions between domains of the animal fatty acid synthase by mutant complementation in vitro. Biochemistry, 36, 2316–2322.

    Article  CAS  PubMed  Google Scholar 

  • Kadegowda, A., Piperova, L., Delmonte, P. & Erdman, R. (2008). Abomasal infusion of butterfat increases milk fat in lactating dairy cows. Journal of Dairy Science, 91, 2370–2379.

    Article  CAS  PubMed  Google Scholar 

  • Karijord, Ø., Standal, N. & Syrstad, O. (1982). Sources of variation in composition of milk fat. Zeitschrift für Tierzüchtung und Züchtungsbiologie, 99, 81–93.

    Article  CAS  Google Scholar 

  • Katz, J. & Wals, P. A. (1972). Pentose cycle and reducing equivalents in rat mammary-gland slices. Biochemical Journal, 128, 879–899.

    Article  CAS  PubMed Central  Google Scholar 

  • Kaupe, B., Winter, A., Fries, R. & Erhardt, G. (2004). DGAT1 polymorphism in Bos indicus and Bos taurus cattle breeds. Journal of Dairy Research, 71, 182–187.

    Article  CAS  Google Scholar 

  • Kelsey, J. A., Corl, B. A., Collier, R. J. & Bauman, D. E. (2003). The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. Journal of Dairy Science, 86, 2588–2597.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K.-H. (1997). Regulation of mammalian acetyl-coenzyme A carboxylase. Annual Review of Nutrition, 17, 77–99.

    Article  CAS  PubMed  Google Scholar 

  • Kinsella, J. E. (1968). The incorporation of [14C3] glycerol into lipids by dispersed bovine mammary cells. Biochimica et Biophysica Acta, 164, 540–549.

    Article  CAS  PubMed  Google Scholar 

  • Kinsella, J. E. (1972). Stearyl Co-A as a precursor of oleic acid and glycerolipids in mammary microsomes from lactating bovine: Possible regulatory step in milk triglyceride synthesis. Lipids, 7, 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Kinsella, J. E. (1973). Preferential labeling of phosphatidylcholine during phospholipids synthesis by bovine mammary tissue. Lipids, 8, 393–400.

    Article  CAS  PubMed  Google Scholar 

  • Kinsella, J. E. & Gross, M. (1973). Palmitic acid and initiation of mammary glyceride synthesis via phosphatidic acid. Biochimica et Biophysica Acta, 316, 109–113.

    Article  CAS  PubMed  Google Scholar 

  • Kinsella, J. E. & Infante, J. P. (1974). Acyl-CoA acyl-sn glycerol-3 phosphorylcholine acyl transferase of bovine mammary tissue. Lipids, 9, 748–751.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen, J. (1979). Medium-chain fatty acid synthesis in lactating-rabbit mammary gland. Biochemical Journal, 181, 267–274.

    Article  CAS  PubMed Central  Google Scholar 

  • Knudsen, J. & Grunnet, I. (1982). Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of medium-chain-length (C8-C12) acyl-CoA esters by goat mammary gland fatty acid synthetase. Biochemical Journal, 202, 139–143.

    Article  CAS  PubMed Central  Google Scholar 

  • Knudsen, J., Neergaard, T. B. F., Gaigg, B., Jensen, M. V. & Hansen, J. K. (2000). Role of acyl-CoA binding protein in acyl-CoA metabolism and acyl-CoA-mediated cell signaling. Journal of Nutrition, 130, 294S–298S.

    Article  CAS  Google Scholar 

  • Kong, I., Lopez-Casillas, F. & Kim, K. (1990). Acetyl-CoA carboxylase mrna species with or without inhibitory coding sequence for ser-1200 phosphorylation. Journal of Biological Chemistry, 265, 13695–13701.

    CAS  Google Scholar 

  • Korn, E. D. (1962). The lipoprotein lipase of cow’s milk. Journal of Lipid Research, 3, 246–249.

    CAS  Google Scholar 

  • Laakso, P., Manninen, P., Mäkinen, J. & Kallio, H. (1996). Postparturition changes in the triacylglycerols of cow colostrums. Lipids, 31, 937–943.

    Article  CAS  PubMed  Google Scholar 

  • Laarveld, B., Chaplin, R. K. & Brockman, R. P. (1985). Effects of insulin on the metabolism of acetate, beta-hydroxybutyrate and triglycerides by the bovine mammary gland. Comparative Biochemistry and Physiology. B, 82, 265–267.

    Article  CAS  Google Scholar 

  • LaCount, D. W., Drackley, J. K., Laesch, S. O. & Clark, J. H. (1994). Secretion of oleic acid in milk fat in response to abomasal infusions of canola or high oleic sunflower fatty acids. Journal of Dairy Science, 77, 1372–1385.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. H. & Kim, K.-H. (1979). Stimulation by epinephrine of in vivo phosphorylation and inactivation of acetyl coenzyme A carboxylase of rat epididymal adipose tissue. Journal of Biological Chemistry, 254, 1450–1453.

    CAS  Google Scholar 

  • Liesman, J. S., Emery, R. S., Akers, R. M. & Tucker, H. A. (1988). Mammary lipoprotein lipase in plasma of cows after parturition or prolactin infusion. Lipids, 23, 504–507.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C. Y. & Kumar, S. (1972). Pathway for the synthesis of fatty acids in mammalian tissues. Journal of Biological Chemistry, 247, 604–606.

    CAS  Google Scholar 

  • Lin, C. Y., Smith, S. & Abraham, S. (1976). Acyl specificity in triglyceride synthesis by lactating rat mammary gland. Journal of Lipid Research, 17, 647–656.

    CAS  PubMed  Google Scholar 

  • Loften, J. R., Linn, J. G., Drackley, J. K., Jenkins, T. C., Soderholm, C. G. & Kertz, A. F. (2014). Invited review: Palmitic and stearic acid metabolism in lactating dairy cows. Journal of Dairy Science, 97, 4661–4674.

    Article  CAS  PubMed  Google Scholar 

  • Lordan, R., Tsoupras, A., Mitra, B. & Zabetakis, I. (2018). Dairy fats and cardiovascular disease: Do we really need to be concerned? Food, 7, E29.

    Article  CAS  Google Scholar 

  • Lynch, J. M., Barbano, D. M., Bauman, D. E., Hartnell, G. F. & Nemeth, M. A. (1992). Effect of a prolonged-release formulation of N-methionyl bovine somatotropin (Sometribove) on milk fat. Journal of Dairy Science, 75, 1794–1809.

    Article  CAS  PubMed  Google Scholar 

  • Mani, O., Korner, M., Sorensen, M. T., Sejrsen, K., Wotzkow, C., Ontsouka, C. E., Friis, R. R., Bruckmaier, R. M. & Albrecht, C. (2010). Expression, localization, and functional model of cholesterol transporters in lactating and nonlactating mammary tissues of murine, bovine, and human origin. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 299, R642–R654.

    Article  CAS  PubMed  Google Scholar 

  • Mao, J. & Seyfert, H.-M. (2002). Promoter II of the bovine acetyl-coenzyme A carboxylase – alpha-encoding gene is widely expressed and strongly active in different cells. Biochimica et Biophysica Acta, 1576, 324–329.

    Article  CAS  PubMed  Google Scholar 

  • Mao, J., Marcos, S., Davis, S. K., Burzlaff, J. & Seyfert, H.-M. (2001). Genomic distribution of three promoters of the bovine gene encoding aceyl-CoA carboxylase alpha and evidence that the nutritionally regulated promoter I contains a repressive element different from that in the rat. Biochemical Journal, 358, 127–135.

    Article  CAS  PubMed Central  Google Scholar 

  • Marshall, M. O. & Knudsen, J. (1977). The specificity of 1-acyl-sn-glycerol 3-phosphate acyltransferase in microsomal fractions from lactating cow mammary gland towards short, medium and long chain acyl-CoA esters. Biochimica et Biophysica Acta, 489, 236–241.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, M. O. & Knudsen, J. (1980). Factors influencing the in vitro activity of diacylglycerol acyltransferase from bovine mammary gland and liver towards butyryl-CoA and palmitoyl-CoA. Biochimica et Biophysica Acta, 617, 393–397.

    Article  CAS  PubMed  Google Scholar 

  • Massart-Leen, A. M., DePooter, H., Decloedt, M. & Schamp, N. (1981). Composition and variability of the branched-chain fatty acid fraction in the milk of goats and cows. Lipids, 16, 286–292.

    Article  CAS  Google Scholar 

  • Mather, I. H. & Keenan, T. W. (1998). Origin and secretion of milk lipids. Journal of Mammary Gland Biology and Neoplasia, 3, 259–273.

    Article  CAS  PubMed  Google Scholar 

  • Maynard, L. A. & McCay, C. M. (1929). The influence of a low-fat diet upon fat metabolism during lactation. Journal of Nutrition, 2, 67–81.

    Article  CAS  Google Scholar 

  • McBride, O. W. & Korn, E. D. (1964). Presence of glycerokinase in guinea pig mammary gland and the incorporation of glycerol into glycerides. Journal of Lipid Research, 5, 442–417.

    CAS  PubMed  Google Scholar 

  • McClymont, G. L. & Vallance, S. (1962). Depression of blood glycerides and milk fat synthesis by glucose infusion. Proceedings of the Nutrition Society, 21, xli.

    Google Scholar 

  • McDonald, I. W. & Scott, T. W. (1977). Foods of ruminant origin with elevated content of polyunsaturated fatty acids. World Review of Nutrition and Dietetics, 26, 144–207.

    Article  CAS  Google Scholar 

  • McFadden, J. W. & Rico, J. E. (2019). Invited review: Sphingolipid biology in the dairy cow: The emerging role of ceramide. Journal of Dairy Science, 102, 7919–7919.

    Article  CAS  Google Scholar 

  • McManaman, J. L. (2012). Milk lipid secretion: Recent biomolecular aspects. Biomolecular Concepts, 3, 581–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McManaman, J. L., Palmer, C. A., Wright, R. M. & Neville, M. C. (2002). Functional regulation of xanthine oxidoreductase expression and localization in the mouse mammary gland: Evidence of a role in lipid secretion. Journal of Physiology, 545, 567–579.

    Article  CAS  Google Scholar 

  • Mellenberger, R. W. & Bauman, D. E. (1974). Fatty acid synthesis in rabbit mammary tissue during pregnancy and lactation. Biochemical Journal, 138, 373–379.

    Article  CAS  PubMed Central  Google Scholar 

  • Mellenberger, R. W., Bauman, D. E. & Nelson, D. R. (1973). Fatty acid and lactose synthesis in cow mammary tissue. Biochemical Journal, 136, 741–748.

    Article  CAS  PubMed Central  Google Scholar 

  • Mikkelsen, J. & Knudsen, J. (1987). Acyl-CoA-binding protein from cow. Binding characteristics and cellular and tissue distribution. Biochemical Journal, 248, 709–714.

    Article  CAS  PubMed Central  Google Scholar 

  • Miller, P. S., Reis, B. L., Calvert, C. C., DePeters, E. J. & Baldwin, R. L. (1991). Patterns of nutrient uptake by the mammary glands of lactating dairy cows. Journal of Dairy Science, 74, 3791–3799.

    Article  CAS  PubMed  Google Scholar 

  • Moallem, U. (2018). Invited review: Roles of dietary n-3 fatty acids in performance, milk fat composition, and reproductive and immune systems in dairy cattle. Journal of Dairy Science, 101, 8641–8661.

    Article  CAS  PubMed  Google Scholar 

  • Moate, P. J., Chalupa, W., Boston, R. C. & Lean, I. J. (2008). Milk fatty acids ii: Prediction of the production of individual fatty acids in bovine milk. Journal of Dairy Science, 91, 1175–1188.

    Article  CAS  PubMed  Google Scholar 

  • Molenaar, A., Mao, J., Oden, K. & Seyfert, H.-M. (2003). All three promoters of the actetyl-coenzyme A-carboxylase α-encoding gene are expressed in mammary cells of ruminants. Journal of Histochemistry and Cytochemistry, 51, 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  • Moore, J. H. & Christie, W. W. (1981). Lipid metabolism in the mammary gland of ruminants. In W. W. Christie (Ed.), Lipid metabolism in ruminant animals (pp. 227–277). Oxford: Pergamon Press.

    Chapter  Google Scholar 

  • Morales, M. S., Palmquist, D. L. & Weiss, W. P. (2000). Effects of fat source and copper on unsaturation of blood and milk triacylglycerol fatty acids in Holstein and Jersey cows. Journal of Dairy Science, 83, 2105–2111.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, I. M. & Hawke, J. C. (1977a). Triglyceride composition of bovine milk fat with elevated levels of linoleic acid. Lipids, 12, 994–1004.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, I. M. & Hawke, J. C. (1977b). Positional distribution of fatty acids in the triglycerides of bovine milk fat with elevated levels of linoleic acid. Lipids, 12, 1005–1011.

    Article  CAS  PubMed  Google Scholar 

  • Murray, R. K., Granner, D. K., Mayes, P. A. & Rodwell, V. W. (1988). Harper’s biochemistry (21st ed.). Norwalk/San Mateo: Appleton & Lange.

    Google Scholar 

  • Nandedkar, A. K. N., Schirmer, E. W., Pynadath, T. I. & Kumar, S. (1969). Biosynthesis of fatty acid in mammary tissue. I. Purification and properties of fatty acid synthetase from lactating-goat mammary tissue. Archives of Biochemistry and Biophysics, 134, 554–562.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, M. O. & Jakobsen, K. (1994). Changes in mammary uptake of free fatty acids, triglyceride, cholesterol and phospholipid in relation to milk synthesis during lactation in goats. Comparative Biochemistry and Physiology, 109A, 857–867.

    Article  CAS  Google Scholar 

  • Nielsen, M. O., Madsen, T. G. & Hedeboe, A. M. (2001). Regulation of mammary glucose uptake in goats: Role of mammary gland supply, insulin, IGF-1 and synthetic capacity. Journal of Dairy Research, 68, 337–349.

    Article  CAS  Google Scholar 

  • Ntambi, J. M. & Miyazaki, M. (2004). Regulation of stearoyl-CoA desaturases and role in metabolism. Progress in Lipid Research, 43, 91–104.

    Article  CAS  PubMed  Google Scholar 

  • Ogg, S. L., Weldon, A. K., Dobbie, L., Smith, A. J. & Mather, I. H. (2004). Expression of butyrophilin (btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proceedings of the National Academy of Sciences of the United States of America, 101, 10084–10089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onetti, S. G., Shaver, R. D., McGuire, M. A., Palmquist, D. L. & Grummer, R. R. (2002). Effect of supplemental tallow on performance of dairy cows fed diets with different corn silage: Alfalfa silage ratios. Journal of Dairy Science, 85, 632–641.

    Article  CAS  PubMed  Google Scholar 

  • Oscar, T. P., Baumrucker, C. R. & Etherton, T. D. (1986). Insulin binding to bovine mammary membranes: Comparison of microsomes versus smooth membranes. Journal of Animal Science, 62, 179–186.

    Article  CAS  PubMed  Google Scholar 

  • Palmquist, D. L. (1991). Influence of source and amount of dietary fat on digestibility in lactating cows. Journal of Dairy Science, 74, 1354–1360.

    Article  CAS  PubMed  Google Scholar 

  • Palmquist, D. L. (2009). Omega-3 fatty acids in metabolism, health, and nutrition for modified animal product foods. Professional Animal Scientists, 25, 207–249.

    Article  Google Scholar 

  • Palmquist, D. L. & Conrad, H. R. (1971). Origin of plasma fatty acids in lactating cows fed high grain or high fat diets. Journal of Dairy Science, 54, 1025–1033.

    Article  CAS  PubMed  Google Scholar 

  • Palmquist, D. L. & Jenkins, T. C. (1980). Fat in lactation rations: Review. Journal of Dairy Science, 63, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Palmquist, D. L. & Mattos, W. (1978). Turnover of lipoproteins and transfer to milk fat of dietary (1-Carbon-14) linoleic acid in lactating cows. Journal of Dairy Science, 61, 561–565.

    Article  CAS  Google Scholar 

  • Palmquist, D. L., Davis, C. L., Brown, R. E. & Sachan, D. S. (1969). Availability and metabolism of various substrates in ruminants. V. Entry rate into the body and incorporation into milk fat of D(-)β-hydroxybutyrate. Journal of Dairy Science, 52, 633–638.

    Article  CAS  Google Scholar 

  • Palmquist, D. L., Beaulieu, A. D. & Barbano, D. M. (1993). Feed and animal factors influencing milk fat composition. Journal of Dairy Science, 76, 1753–1771.

    Article  CAS  PubMed  Google Scholar 

  • Parodi, P. W. (1982). Positional distribution of fatty acids in triglycerides from milk of several species of mammals. Lipids, 17, 437–442.

    Article  CAS  PubMed  Google Scholar 

  • Parodi, P. W. (2003). Anti-cancer agents in milk fat. Australian Journal of Dairy Technology, 58, 114–118.

    CAS  Google Scholar 

  • Parodi, P.W. (2006). Nutritional significance of milk lipids. In P. F. Fox & P. L. H. McSweeny (Eds.), Advanced dairy chemistry (Vol. 2, 3rd ed., pp. 601–639). London: Springer.

    Google Scholar 

  • Patton, S. & Keenan, T. W. (1975). The milk fat globule membrane. Biochimica et Biophysica Acta, 415, 273–309.

    Article  CAS  PubMed  Google Scholar 

  • Perfield, J. W., II, Delmonte, P., Lock, A. L., Yurawecz, M. P. & Bauman, D. E. (2006). Trans-10, trans-12 conjugated linoleic acid does not affect milk fat yield but reduces delta9-desaturase index in dairy cows. Journal of Dairy Science, 89, 2559–2566.

    Article  CAS  PubMed  Google Scholar 

  • Popják, G., French, T. H. & Folley, S. J. (1951). Utilization of acetate for milk-fat synthesis in the lactating goat. Biochemical Journal, 48, 411–416.

    Article  PubMed Central  Google Scholar 

  • Pullen, D. L., Palmquist, D. L. & Emery, R. S. (1989). Effect of days of lactation and methionine hydroxy analog on incorporation of plasma fatty acids into plasma triglycerides. Journal of Dairy Science, 72, 49–58.

    Article  CAS  PubMed  Google Scholar 

  • Raphael, B. C., Patton, S. & McCarthy, R. D. (1975a). The serum lipoproteins as a source of milk cholesterol. FEBS Letters, 58, 47–49.

    Article  CAS  Google Scholar 

  • Raphael, B. C., Patton, S. & McCarthy, R. D. (1975b). Transport of dietary cholesterol into blood and milk of the goat. Journal of Dairy Science, 58, 971–976.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen, J. T., Börchers, T. & Knudsen, J. (1990). Comparison of the binding affinities of acyl-CoA-binding protein and fatty-acid-binding protein for long-chain acyl-CoA esters. Biochemical Journal, 265, 849–855.

    Article  CAS  PubMed Central  Google Scholar 

  • Ridgway, N. D., Byers, D. M., Cook, H. W. & Storey, M. K. (1999). Integration of phospholipids and sterol metabolism in mammalian cells. Progress in Lipid Research, 38, 337–360.

    Article  CAS  PubMed  Google Scholar 

  • Ross, A. C. & Rowe, J. F. (1984). Cholesterol esterification by mammary gland microsomes from the lactating rat. Proceedings of the Society for Experimental Biology and Medicine, 176, 42–47.

    Article  CAS  PubMed  Google Scholar 

  • Rottman, L. W., Ying, Y., Zhou, K., Bartell, P. A. & Harvatine, K. J. (2015). The effects of feeding rations that differ in neutral detergent fiber and starch concentration within a day on production, feeding behavior, total-tract digestibility, and plasma metabolites and hormones in dairy cows. Journal of Dairy Science, 97, 4673–4684.

    Article  CAS  Google Scholar 

  • Ryder, E., Gregolin, C., Chang, H. C. & Lane, M. D. (1967). Liver acetyl CoA carboxylase: Insight into the mechanism of activation by tricarboxylic acids and acetyl coa. Proceedings of the National Academy of Sciences, 57, 1455–1462.

    Article  CAS  Google Scholar 

  • Salfer, I. J., Dechow, C. D. & Harvatine, K. J. (2019). Annual rhythms of milk and milk fat and protein production in dairy cattle in the United States. Journal of Dairy Science, 102, 742–753.

    Article  CAS  PubMed  Google Scholar 

  • Schauff, D. J. & Clark, J. H. (1992). Effects of feeding diets containing calcium salts of long chain fatty acids to lactating dairy cows. Journal of Dairy Science, 75, 2990–3002.

    Article  CAS  PubMed  Google Scholar 

  • Schennink, A., Stoop, W. M., Visker, M. H., Heck, J. M., Bovenhuis, H., van der Poel, J. J., van Valenberg, H. J. & van Arendonk, J. A. (2007). Dgat1 underlies large genetic variation in milk-fat composition of dairy cows. Animal Genetics, 38, 467–473.

    Article  CAS  PubMed  Google Scholar 

  • Schwenk, R. W., Holloway, G. P., Luiken, J. J. F. P., Bonen, A. & Glatz, J. F. C. (2010). Fatty acid transport across the cell membrane: Regulation by fatty acid transporters. Prostoglandins, Leukotrienes, and Essential Fatty Acids, 82, 149–154.

    Article  CAS  Google Scholar 

  • Schwertfeger, K. L., McManaman, J. L., Palmer, C. A., Neville, M. C. & Anderson, S. M. (2003). Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. Journal of Lipid Research, 44, 1100–1112.

    Article  CAS  PubMed  Google Scholar 

  • Shand, J. H. & West, D. W. (1991). Acyl-CoA: Cholesterol acyltransferase activity in the rat mammary gland: Variation during pregnancy and lactation. Lipids, 26, 150–154.

    Article  CAS  PubMed  Google Scholar 

  • Shennan, D. B. & Peaker, M. (2000). Transport of milk constituents by the mammary gland. Physiological Reviews, 80, 925–951.

    Article  CAS  PubMed  Google Scholar 

  • Shingfield, K. J., Ahvenjärvi, S., Toivonen, V., Arölä, A., Nurmela, K. V. V., Huhtanen, P. & Griinari, J. M. (2003). Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Animal Science, 77, 165–179.

    Article  CAS  Google Scholar 

  • Shingfield, K. J., Arola, A., Ahvenjarvi, S., Vanhatalo, A., Toivonen, V., Griinari, J. M. & Huhtanen, P. (2008). Ruminal infusion of cobalt-edta reduce mammary delta9-desaturase index and alter milk fatty acid composition in lactating cows. Journal of Nutrition, 138, 710–717.

    Article  CAS  Google Scholar 

  • Shingfield, K. J., Bonnet, M. & Scollan, N. D. (2013). Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal, 7(Suppl 1), 132–162.

    Article  CAS  PubMed  Google Scholar 

  • Shirley, J. F., Emery, R. S., Convey, E. M. & Oxender, W. D. (1973). Enzymic changes in bovine adipose and mammary tissue serum and mammary tissue hormonal changes with initiation of lactation. Journal of Dairy Science, 56, 569–574.

    Article  CAS  PubMed  Google Scholar 

  • Signorelli, F., Orru, L., Napolitano, F., De Matteis, G., Scata, M. C., Catillo, G., Marchitelli, C. & Moioli, B. (2009). Exploring polymorphisms and effects on milk traits of the dgat1, scd1 and ghr genes in four cattle breeds. Livestock Science, 125, 74–79.

    Article  Google Scholar 

  • Small, C. A., Yeaman, S. J., West, D. W. & Clegg, R. A. (1991). Cholesterol ester hydrolysis and hormone-sensitive lipase in lactating rat mammary tissue. Biochimica et Biophysica Acta, 1082, 251–254.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S. (1994). The animal fatty acid synthase: One gene, one polypeptide, seven enzymes. The FASEB Journal, 8, 1248–1259.

    Article  CAS  PubMed  Google Scholar 

  • Smith, G. H., McCarthy, S. & Rook, J. A. F. (1974). Synthesis of milk fat from β-hydroxybutyrate and acetate in lactating goats. Journal of Dairy Research, 41, 175–191.

    Article  CAS  Google Scholar 

  • Smith, S. J., Cases, S., Jensen, D. R., Chen, H. C., Sande, E., Tow, B., Sanan, D. A., Raber, J., Eckel, R. H. & Farese, R. V., Jr. (2000). Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT 1. Nature Genetics, 25, 87–90.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S., Witkowski, A. & Joshi, A. K. (2003). Structural and functional organization of the animal fatty acid synthase. Progress in Lipid Research, 42, 289–317.

    Article  CAS  PubMed  Google Scholar 

  • Storch, J. & Thumser, A. E. A. (2000). The fatty acid transport function of fatty acid-binding proteins. Biochimica et Biophysica Acta, 1486, 28–44.

    Article  CAS  PubMed  Google Scholar 

  • Storry, J. E., Hall, A. J. & Johnson, V. W. (1971). The effects of increasing amounts of dietary coconut oil on milk-fat secretion in the cow. Journal of Dairy Research, 38, 73–77.

    Article  CAS  Google Scholar 

  • Taniguchi, M., Mannen, H., Oyama, K., Shimakura, Y., Oka, A., Watanabe, H., Kojima, T., Komatsu, M., Harper, G. S. & Tsuji, S. (2004). Differences in stearoyl-CoA desaturase mRNA levels between Japanese Black and Holstein cattle. Livestock Production Science, 87, 215–220.

    Article  Google Scholar 

  • Timmen, H. & Patton, S. (1988). Milk fat globules: Fatty acid composition, size and in vivo regulation of fat liquidity. Lipids, 23, 685–689.

    Article  CAS  PubMed  Google Scholar 

  • Timmons, J. S., Weiss, W. P., Palmquist, D. L. & Harper, W. J. (2001). Relationships among dietary roasted soybeans, milk components, and spontaneous oxidized flavor of milk. Journal of Dairy Science, 84, 2440–2449.

    Article  CAS  PubMed  Google Scholar 

  • Tong, L. (2005). Acetyl-coenzyme a carboxylase: Crucial metabolic enzyme and attractive target for drug discovery. Cellular and Molecular Life Sciences, 62, 1784–1803.

    Article  CAS  PubMed  Google Scholar 

  • Toral, P. G., Monahan, F. J., Hervas, G., Frutos, P. & Moloney, A. P. (2018). Review: Modulating ruminal lipid metabolism to improve the fatty acid composition of meat and milk. Challenges and opportunities. Animal, 12, s272–s281.

    Article  CAS  PubMed  Google Scholar 

  • Torok, E. D., Beitz, D. C., Johnson, D. C., Baldner-Shank, G. L. & McGilliard, A. D. (1986). Use of different precursors for lipogenesis in ruminant mammary tissue. Nutrition Research, 6, 1211–1218.

    Article  CAS  Google Scholar 

  • Travers, M. T. & Barber, M. C. (2001). Acetyl-CoA carboxylase-{alpha}: Gene structure-function relationships. Journal of Animal Science, 79, E136–E143.

    Article  Google Scholar 

  • van Soest, P. J. (1963). Ruminant fat metabolism with particular reference to factors affecting low milk fat and feed efficiency. A review. Journal of Dairy Science, 46, 204–216.

    Article  Google Scholar 

  • Vallance, W. S. & McClymont, G. L. (1959). Depression in percentage of milk fat by parenteral glucose infusion and glycerol feeding. Nature, 183, 466–467.

    Article  CAS  PubMed  Google Scholar 

  • Veerkamp, J. H., Peeters, R. A. & Maatman, R. G. H. J. (1991). Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochimica et Biophysica Acta, 1081, 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Vernon, R. G., Faulkner, A., Finley, E., Pollock, H. & Taylor, E. (1987). Enzymes of glucose and fatty acid metabolism of liver, kidney, skeletal muscle, adipose tissue and mammary gland of lactating and non-lactating sheep. Journal of Animal Science, 64, 1395–1411.

    Article  CAS  PubMed  Google Scholar 

  • Vesper, H., Schmelz, E. M., Nikolova-Karakashian, M. N., Dillehay, D. L., Lynch, D. V. & Merrill, A. H., Jr. (1999). Sphingolipids in food and the emerging importance of sphingolipids to nutrition. Journal of Nutrition, 129, 1239–1250.

    Article  CAS  Google Scholar 

  • Virtanen, A. I. (1966). Milk production of cows on protein-free feed. Studies of the use of urea and ammonium salts as the sole nitrogen source open new important perspectives. Science, 153, 1603–1614.

    Article  CAS  PubMed  Google Scholar 

  • Volpe, J. J. & Vagelos, P. R. (1973). Saturated fatty acid biosynthesis and its regulation. Annual Review of Biochemistry, 42, 21–60.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Wurmser, C., Pausch, H., Jung, S., Reinhardt, F., Tetens, J., Thaller, G. & Fries, R. (2012). Identification and dissection of four major qtl affecting milk fat content in the german holstein-friesian population. PLoS One, 7, e40711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welper, R. D. & Freeman, A. E. (1992). Genetic parameters for yield traits of holsteins, including lactose and somatic cell score. Journal of Dairy Science, 75, 1342–1348.

    Article  CAS  PubMed  Google Scholar 

  • West, C. E., Bickerstaffe, R., Annison, E. F. & Linzell, J. L. (1972). Studies on the mode of uptake of blood triglycerides by the mammary gland of the lactating goat. The uptake and incorporation into milk fat and mammary lymph of labeled glycerol, fatty acids and triglycerides. Biochemical Journal, 126, 477–490.

    Article  CAS  PubMed Central  Google Scholar 

  • Williamson, D. H., Munday, M. R., Jones, R. G., Roberts, A. F. & Ramsey, A. J. (1983). Short-term dietary regulation of lipogenesis in the lactating mammary gland of the rat. Advances in Enzyme Regulation, 21, 135–145.

    Article  CAS  PubMed  Google Scholar 

  • Winter, A., Krämer, W., Werner, F. A. O., Kollers, S., Kata, S., Durstewitz, G., Buitkamp, J., Womack, J. E., Thaller, G. & Fries, R. (2002). Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA: Diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proceedings of the National Academy of Sciences, 99, 9300–9305.

    Article  CAS  Google Scholar 

  • Witters, L. A., Moriarity, D. & Martin, D. B. (1979). Regulation of hepatic acetyl coenzyme A carboxylase by insulin and glucagon. Journal of Biological Chemistry, 254, 6644–6649.

    CAS  Google Scholar 

  • Wood, H. G., Peeters, G. J., Verbeke, R., Lauryssens, M. & Jacobson, B. (1965). Estimation of the pentose cycle in the perfused cow’s udder. Biochemical Journal, 96, 607–615.

    Article  CAS  PubMed Central  Google Scholar 

  • Woolpert, M. E., Dann, H. M., Cotanch, K. W., Melilli, C., Chase, L. E., Grant, R. J. & Barbano, D. M. (2016). Management, nutrition, and lactation performance are related to bulk tank milk de novo fatty acid concentration on northeastern US dairy farms. Journal of Dairy Science, 99, 8486–8497.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y. T. & Baldwin, R. L. (1973). Preparation and metabolism of isolated cells from bovine adipose tissue. Journal of Dairy Science, 56, 350–365.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., Liu, S., Chen, X., Chen, H., Huang, M. & Zheng, J. (2000). Induction of apoptotic cell death and in vivo growth inhibition of human cancer cells by a saturated branched-chain fatty acid, 13-methyltetradecanoic acid. Cancer Research, 60, 505–509.

    CAS  PubMed  Google Scholar 

  • Zhao, F.-Q., Dixon, W. T. & Kennelly, J. J. (1996). Localization and gene expression of glucose transporters in bovine mammary gland. Comparative Biochemistry and Physiology, 115B, 127–134.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Palmquist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palmquist, D.L., Harvatine, K.J. (2020). Origin of Fatty Acids and Influence of Nutritional Factors on Milk Fat. In: McSweeney, P.L.H., Fox, P.F., O'Mahony, J.A. (eds) Advanced Dairy Chemistry, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-48686-0_2

Download citation

Publish with us

Policies and ethics