Skip to main content

I’m Not There. Or: Was the Virtual Particle Ever Born?

  • Chapter
  • First Online:
Biographies in the History of Physics

Abstract

The virtual particle is an integral part of the conceptual framework of modern quantum electrodynamics (QED) and quantum field theory (QFT). Although these particles are in principle unobservable and, according to a popular narrative, violate energy conservation for the short time of their existence, their centrality in the conceptual framework is unquestionable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “[…] so muß man noch ihre gegenseitige Energie in Betracht ziehen, wobei die Differenz \( {\text{h}}\upnu_{\text{no}} - {\text{h}}\upnu \) auf Kosten dieser gegenseitigen Energie zu kompensieren ist”.

  2. 2.

    “[…] beide besprochenen Prozesse ebenso wie der Ramaneffekt verhalten [sich so], als ob zwei Vorgänge, von denen jeder nicht dem Energiesatz genügt, in einem Akt geschehen”.

  3. 3.

    “[das] Zusammenwirken zweier Lichtquanten in einem Elementarakt”.

References

  • Arabatzis, T. (2006). Representing electrons. A biographical approach to theoretical entities. Chicago and London: University of Chicago Press.

    Google Scholar 

  • Bacelar Valente, M. (2011). Are virtual quanta nothing but formal tools? International Studies in the Philosophy of Science, 25(1), 39–53.

    MathSciNet  Google Scholar 

  • Bethe, H., & Fermi, E. (1932). Über die Wechselwirkung von zwei Elektronen. Zeitschrift für Physik, 77(5–6), 296–306.

    ADS  MATH  Google Scholar 

  • Blum, A. (2017). The state is not abolished, it withers away: How quantum field theory became a theory of scattering. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 60, 46–80.

    ADS  MathSciNet  MATH  Google Scholar 

  • Bohr, N., Kramers, H. A., & Slater, J. C. (1924). Über die Quantentheorie der Strahlung. Zeitschrift für Physik, 24(1), 69–87.

    ADS  Google Scholar 

  • Brand, J. C. D. (1989). The discovery of the Raman effect. Notes and Records: The Royal Society Journal of the History of Science, 43, 1–23.

    Google Scholar 

  • Bromberg, Joan. (1977). Dirac’s quantum electrodynamics and the wave-particle equivalence. In Charles Wiener (Ed.), History of twentieth century physics (pp. 147–157). New York and London: Academic Press.

    Google Scholar 

  • Cao, T. Y. (1997). Conceptual developments of 20th century field theory. Cambridge and New York: Cambridge University Press.

    MATH  Google Scholar 

  • Carson, Cathryn. (1996). The peculiar notion of exchange forces II: From nuclear forces to QED, 1929–1950. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 27(2), 99–131.

    ADS  MathSciNet  MATH  Google Scholar 

  • Darrigol, O. (1986). The origin of quantized matter waves. Historical Studies in the Physical Sciences, 16(2), 197–253.

    Google Scholar 

  • Dieke, G. H. (1929). Difference between the absorption and the Raman spectrum. Nature, 123(3102), 564.

    ADS  Google Scholar 

  • Dirac, P. A. M. (1926). On the theory of quantum mechanics. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 112(762), 661–677.

    ADS  MATH  Google Scholar 

  • Dirac, P. A. M. (1927a). The quantum theory of the emission and absorption of radiation. Proceedings of the Royal Society of London A: Mathematical, Physical, and Engineering Sciences, 114(767), 243–265.

    ADS  MATH  Google Scholar 

  • Dirac, P. A. M. (1927b). The quantum theory of dispersion. Proceedings of the Royal Society of London A: Mathematical, Physical, and Engineering Sciences, 114(769), 710–728.

    ADS  MATH  Google Scholar 

  • Dirac, P. A. M. (1928). The quantum theory of the electron. Proceedings of the Royal Society of London A: Mathematical, Physical, and Engineering Sciences, 117(778), 610–624.

    ADS  MATH  Google Scholar 

  • Dirac, P. A. M. (1930). A theory of electrons and protons. Proceedings of the Royal Society of London A: Mathematical, Physical, and Engineering Sciences, 126(801), 360–365.

    ADS  MATH  Google Scholar 

  • Dirac, P. A. M. (1931). Quantised singularities in the electromagnetic field. Proceedings of the Royal Society of London A: Mathematical, Physical, and Engineering Sciences, 133(821), 60–72.

    ADS  MATH  Google Scholar 

  • Dirac, P. A. M. (1934). Discussion of the infinite distribution of electrons in the theory of the positron. Proceedings of the Cambridge Philosophical Society, 30, 150–163.

    ADS  MATH  Google Scholar 

  • Dyson, F. J. (1949). The radiation theories of Tomonaga, Schwinger, and Feynman. Physical Review, 75(3), 486–502.

    ADS  MathSciNet  MATH  Google Scholar 

  • Euler, H., & Kockel, B. (1935). Über die Streuung von Licht an Licht nach der Diracschen Theorie. Die Naturwissenschaften, 23(15), 246–247.

    ADS  MATH  Google Scholar 

  • Euler, H. (1936). Über die Streuung von Licht und Licht nach der Diracschen Theorie. Annalen der Physik, 418(5), 398–448.

    ADS  MATH  Google Scholar 

  • Fermi, E. (1932). Quantum theory of radiation. Reviews of Modern Physics, 4(1), 87–132.

    ADS  MATH  Google Scholar 

  • Feynman, R. (1949). Space-time approach to quantum electrodynamics. Physical Review, 76(6), 769–789.

    ADS  MathSciNet  MATH  Google Scholar 

  • Fox, T. (2008). Haunted by the spectre of virtual particles: A philosophical reconsideration. Journal for General Philosophy of Science, 39(1), 35–51.

    MathSciNet  Google Scholar 

  • Frenkel, Y. I. (1929a). Über die quantenmechanische Energieübertragung zwischen atomaren Systemen. Zeitschrift für Physik, 58(11–12), 794–804.

    ADS  MATH  Google Scholar 

  • Frenkel, Y. I. (1929b). The quantum theory of the absorption of light. Nature, 124, 758–759.

    ADS  MATH  Google Scholar 

  • Fröhlich, H., Heitler, W., & Kemmer, N. (1938). On the nuclear forces and the magnetic moments of the neutron and the proton. Proceedings of the Royal Society of London A: Mathematical, Physical, and Engineering Sciences, 166(924), 154–177.

    ADS  MATH  Google Scholar 

  • Galison, P. (1998). Feynman’s war: modelling weapons, modelling nature. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 29(3), 391–434.

    ADS  MathSciNet  MATH  Google Scholar 

  • Ganesan, A. S. (1929). Bibliography of 150 papers on the Raman effect. Indian Journal of Physics, 4, 281–346.

    MATH  Google Scholar 

  • Göppert, M. (1929). Über die Wahrscheinlichkeit des Zusammenwirkens zweier Lichtquanten in einem Elementarakt. Die Naturwissenschaften, 17(48), 932.

    ADS  MATH  Google Scholar 

  • Göppert-Mayer, M. (1931). Über Elementarakte mit zwei Quantensprüngen. Annalen der Physik, 401(3), 273–294.

    ADS  MATH  Google Scholar 

  • Hahn, H.P. (2015). Dinge sind Fragmente und Assemblagen. Kritische Anmerkungen zur Metapher der ‚Objektbiographie‘. In D. Boschung, P.-A. Kreuz, T. Klienlin (Eds.), Biography of Objects. Aspekte eines kulturhistorischen Konzepts (pp. 11–33). Paderborn: Wilhelm Fink Verlag.

    Google Scholar 

  • Halpern, O. (1933). Scattering processes produced by electrons in negative energy states. Physical Review, 44(10), 855–856.

    ADS  Google Scholar 

  • Heisenberg, W. (1934). Bemerkungen zur Diracschen Theorie des Positrons. Zeitschrift für Physik, 90(3–4), 209–231.

    ADS  MATH  Google Scholar 

  • Heisenberg, W., & Pauli, W. (1929). Zur Quantendynamik der Wellenfelder. Zeitschrift für Physik, 56(1–2), 1–61.

    ADS  MATH  Google Scholar 

  • Heitler, W. (1936). The quantum theory of radiation. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Hulme, H. R. (1932). The Faraday effect in ferromagnetics. Proceedings of the Royal Society of London A: Mathematical, Physical, and Engineering Sciences, 135(826), 237–257.

    ADS  MATH  Google Scholar 

  • Jauch, J. & Rohrlich, F. (1955). The theory of photons and electrons (Second Printing 1959). Reading, Massachusetts, and London: Addison-Wesley Publishing Company.

    Google Scholar 

  • Jost, R. (1972). Foundation of quantum field theory. In Abdus Salam, E.P. Wigner (Eds.), Aspects of quantum theory (pp. 61–78). Cambridge: Cambridge University Press.

    Google Scholar 

  • Kaiser, D. (2005). Drawing theories apart: The dispersion of Feynman diagrams in postwar physics. Chicago and London: University of Chicago Press.

    MATH  Google Scholar 

  • Kragh, H. (1990). Dirac: A scientific biography. Cambridge et al.: Cambridge University Press.

    Google Scholar 

  • Kramers, A., & Heisenberg, W. (1925). Über die Streuung von Strahlung durch Atome. Zeitschrift für Physik, 31(1), 681–708.

    ADS  MATH  Google Scholar 

  • Lacki, J., Ruegg, H., & Telegdi, V. L. (1999). The road to Stueckelberg’s covariant perturbation theory as illustrated by successive treatments of compton scattering. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 30(4), 457–518.

    ADS  MathSciNet  MATH  Google Scholar 

  • Lamb, W. E., & Retherford, R. C. (1947). Fine structure of the hydrogen atom by microwave method. Physical Review, 72, 241–243.

    ADS  Google Scholar 

  • Langer, R. M. (1929). Incoherent scattering. Nature, 123(3097), 345.

    ADS  MATH  Google Scholar 

  • Oppenheimer, R. (1930). On the theory of electrons and protons. Physical Review, 35(5), 562–563.

    ADS  Google Scholar 

  • Pawlak, A. (2004). Physik sakral. Physik Journal, 3(12), 36–37.

    Google Scholar 

  • Peierls, R. (1934). The vacuum in dirac’s theory of the positive electron. Proceedings of the Royal Society of London A: Mathematical, Physical, and Engineering Sciences, 146(857), 420–441.

    ADS  MATH  Google Scholar 

  • Raman, C. V. (1928). A new radiation. Indian Journal of Physics, 2, 368–376.

    Google Scholar 

  • Raman, C. V. (1929). Investigation of molecular structure by light scattering. Transactions of the Faraday Society, 25, 781–792.

    Google Scholar 

  • Raman, C. V., & Krishnan, K. S. (1928). A new type of secondary radiation. Nature, 121, 501–502.

    ADS  Google Scholar 

  • Rasetti, F. (1929). On the Raman effect in diatomic gases. Proceedings of the National Academy of Science of the United States of America, 15(3), 234–237.

    ADS  MATH  Google Scholar 

  • Roqué, X. (1997). The manufacture of the positron. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 28(1), 73–129.

    ADS  MathSciNet  MATH  Google Scholar 

  • Rosenfeld, Leon. (1929). Über die longitudinalen Eigenlösungen der Heisenberg-Paulischen elektromagnetischen Gleichungen. Zeitschrift für Physik, 58(7), 540–555.

    ADS  MATH  Google Scholar 

  • Rueger, A. (1992). Attitudes towards infinities: Responses to anomalies in quantum electrodynamics, 1927–1947. Historical Studies in the Physical Sciences, 22(2), 309–337.

    Google Scholar 

  • Schweber, S.S. (1983). Some chapters for a history of quantum field theory: 1938–1952. In B. DeWitt & R. Stora (Eds.), Les Houches, Session XL. Relativity, Groups, and Topology II, (pp. 37–220). Amsterdam: North Holland Publishing.

    Google Scholar 

  • Schweber, S. S. (1986). Feynman and the visualization of space-time processes. Reviews of Modern Physics, 58(2), 449–508.

    ADS  MathSciNet  Google Scholar 

  • Schweber, S. S. (1994). QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga. Princeton, New Jersey: Princeton University Press.

    MATH  Google Scholar 

  • Seife, C. (2000). Zero. The biography of a dangerous idea. New York: Penguin Books.

    Google Scholar 

  • Singh, R. (2002). C. V. Raman and the discovery of the Raman effect. Physics in Perspective, 4, 399–420.

    ADS  MATH  Google Scholar 

  • Singh, R., & Riess, Falk. (2001). The 1930 Nobel prize for physics: A close decision? Notes and Records: The Royal Society Journal of the History of Science, 55(2), 267–283.

    MATH  Google Scholar 

  • Smekal, A. (1923). Zur Quantentheorie der Dispersion. Die Naturwissenschaften, 11(43), 873–875.

    ADS  Google Scholar 

  • Tamm, I. (1930). Über die Wechselwirkung der freien Elektronen mit der Strahlung nach der Diracschen Theorie des Elektrons und der Quantenelektrodynamik. Zeitschrift für Physik, 62(7–8), 545–568.

    ADS  MATH  Google Scholar 

  • von Meyenn, K., Hermann, A., & Weisskopf V.F. (Ed.). (1979). Wolfgang Pauli. Scientific correspondence with Bohr, Einstein, Heisenberg a.o.. Volume I: 1919–1929. New York, Heidelberg, and Berlin: Springer.

    Google Scholar 

  • von Meyenn, K. (Ed.). (1985). Wolfgang Pauli. Scientific correspondence with Bohr, Einstein, Heisenberg a.o.. Volume II: 1930–1939. Berlin: Springer.

    Google Scholar 

  • Waller, I. (1930). Die Streuung von Strahlung durch gebundene und freie Elektronen nach der Diracschen relativistischen Mechanik. Zeitschrift für Physik, 61(11–12), 837–851.

    ADS  MATH  Google Scholar 

  • Weinberg, S. (1977). The search for unity: Notes for a history of quantum field theory. Daedalus, 106, 17–35.

    Google Scholar 

  • Weisskopf, V. (1931). Zur Theorie der Resonanzfluoreszenz. Annalen der Physik, 401(1), 23–66.

    ADS  MATH  Google Scholar 

  • Weisskopf, V. (1933). Die Streuung des Lichts an angeregten Atomen. Zeitschrift für Physik, 85(7–8), 451–481.

    ADS  MATH  Google Scholar 

  • Weisskopf, V., & Wigner, Eugen. (1930). Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Zeitschrift für Physik, 63(1–2), 54–73.

    ADS  MATH  Google Scholar 

  • Wentzel, G. (1933). Wellenmechanik der Stoß- und Strahlungsvorgänge. In H. Geiger & K. Scheel (Ed.), Handbuch der Physik (2. Auflage). Band XIV, Erster Teil. Quantentheorie (pp. 695–784). Berlin und Heidelberg: Springer.

    Google Scholar 

  • Wentzel, G. (1938). Schwere Elektronen und Theorien der Kernvorgänge. Die Naturwissenschaften, 26(18), 273–279.

    ADS  Google Scholar 

  • Wentzel, G. (1943). Einführung in die Quantentheorie der Wellenfelder. Wien: Deuticke.

    MATH  Google Scholar 

  • Weyl, H. (1931). Gruppentheorie und Quantenmechanik (2nd ed.). Leipzig: Hirzel.

    MATH  Google Scholar 

  • Wick, G. C. (1938). Range of nuclear forces in Yukawa’s theory. Nature, 142(3605), 993–994.

    ADS  Google Scholar 

  • Wood, R. W., & Diecke, G. H. (1930). The Raman effect in HCL gas. Physical Review, 35, 1355–1359.

    ADS  Google Scholar 

  • Wüthrich, A. (2010). The genesis of Feynman diagrams. Dodrecht: Springer.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the research unit “The Epistemology of the LHC”, funded by the Deutsche Forschungsgemeinschaft (DFG) under the grant number FOR 2063. I want to thank the members of the Research-Unit for reading a preprint of this paper. Especially, I want to thank the members of the subproject A1 “The Formation and Development of the Concept of the Virtual Particles”, Robert Harlander, Daniel Mitchel, Friedrich Steinle, and Adrian Wüthrich, for valuable input concerning the structure and content of the paper and for help with the language. I also want to thank Simon Rebohm for pointing me to the paper on object biographies by Hans Peter Hahn and, last but not least, the organizers of the workshop for making this publication possible and the participants for input on the presentation of a preliminary version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Ehberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ehberger, M. (2020). I’m Not There. Or: Was the Virtual Particle Ever Born?. In: Forstner, C., Walker, M. (eds) Biographies in the History of Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-48509-2_15

Download citation

Publish with us

Policies and ethics