Skip to main content

Arbuscular Mycorrhizae Associations and Role in Mitigation of Drought Stress in Plants

  • Chapter
  • First Online:
Agriculturally Important Fungi for Sustainable Agriculture

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Modern agriculture is facing challenge to ensure global food demand. However, climate change is causing increase in temperature which leads to severe droughts in some areas. Numerous biotechnological techniques are being used to overcome this drought stress, among them the use of arbuscular mycorrhizal fungi (AMF) is thought to be a proficient approach for mitigation of drought stress. AMF provide drought tolerance by biochemical and physiological mechanisms. Some of well known mechanisms include modification of hormonal balance including strigolactones, abscisic acid, gibberellic acid, salicylic acid, and jasmonic acid. AMF improve plant water status by increasing hydraulic conductivity, stomatal conductance, water use efficiency, relative water content, and biomass content. Symbiosis of AMF changes expression of plasma membrane and tonoplast aquaporins (water transporting channels) (PIPs and TIPs), which improves water status of the plant. AM increases the rate of photosynthesis of plant by mending photosystem-II (PSII) and boosts quantum efficiency of PSII under drought stress conditions. AM alters the transcript levels of chloroplast genes encoding antenna proteins involved in transfer of excitation energy. This chapter mainly focuses on the mechanisms adopted by AM to provide drought tolerance to plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab M (2012) Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J Plant Physiol 169:704–709

    CAS  PubMed  Google Scholar 

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109(1):1–7

    Google Scholar 

  • Al-Karaki G, McMichael BZ, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14(4):263–269

    PubMed  Google Scholar 

  • Allen MF (2009) Bidirectional water flows through the soil-fungal plant mycorrhizal continuum. New Phytol 182:290–293

    PubMed  Google Scholar 

  • Amiri R, Nikbakht A, Etemadi N (2015) Alleviation of drought stress on rose geranium [Pelargonium graveolens (L.) Herit.] in terms of antioxidant activity and secondary metabolites by mycorrhizal inoculation. Sci Hortic 197:373–380

    CAS  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreño ÁM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170(1):47–55

    CAS  PubMed  Google Scholar 

  • Asensio D, Rapparini F, Peñuelas J (2012) AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry 77:149–161

    CAS  PubMed  Google Scholar 

  • Ashraf M (1994) Organic substances responsible for salt tolerance in Eruca sativa. Biol Plant 36(2):255–259

    CAS  Google Scholar 

  • Asrar AW, Elhindi KM (2011) Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J Biol Sci 18:93–98

    PubMed  Google Scholar 

  • Asrar AA, Abdel-Fattah GM, Elhindi KM (2012) Improving growth, flower yield, and water relations of snapdragon (Antirrhinum majus L.) plants grown under well watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50(2):305–316

    CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Google Scholar 

  • Augé RM, Toler HD, Moore JL, Cho K, Saxton AM (2007) Comparing contributions of soil versus root colonization to variations in stomatal behavior and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo. J Plant Physiol 164(10):1289–1299

    Google Scholar 

  • Augé RM, Toler HD, Sams CE, Nasim G (2008) Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18(3):115–121

    PubMed  Google Scholar 

  • Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25(1):13–24

    PubMed  Google Scholar 

  • Auldridge ME, McCarty DR, Klee HJ (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9(3):315–321

    CAS  PubMed  Google Scholar 

  • Austin RB (1989) Maximising crop production in water-limited environments

    Google Scholar 

  • Bago B (2000) Putative sites for nutrient uptake in arbuscular mycorrhizal fungi. Plant Soil 226:263–274

    Google Scholar 

  • Bárzana G, Aroca R, Ruiz-Lozano JM (2015) Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant Cell Environ 38:1613–1627

    PubMed  Google Scholar 

  • Bayani R, Saateyi A, Faghani E (2015) Influence of arbuscular mycorrhiza in phosphorus acquisition efficiency and drought-tolerance mechanisms in barley. Int J Biosci 7(1):86–94

    CAS  Google Scholar 

  • Benabdellah K, Abbas Y, Abourouh M, Aroca R, Azcón R (2011) Influence of two bacterial isolates from degraded and non-degraded soils and arbuscular mycorrhizae fungi isolated from semi-arid zone on the growth of Trifolium repens under drought conditions: mechanisms related to bacterial effectiveness. Eur J Soil Biol 47:303–309

    Google Scholar 

  • Berreck M, Haselwandter K (2001) Effect of the arbuscular mycorrhizal symbiosis upon uptake of cesium and other cations by plants. Mycorrhiza 10(6):275–280

    CAS  Google Scholar 

  • Boldt K, Pörs Y, Haupt B, Bitterlich M, Kühn C, Grimm B, Franken P (2011) Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. J Plant Physiol 168(11):1256–1263

    CAS  PubMed  Google Scholar 

  • Borde M, Dudhane M, Jite P (2011) Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition. Crop Prot 30(3):265–271

    CAS  Google Scholar 

  • Boyer LR, Brain P, Xu XM, Jeffries P (2015) Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza 25(3):215–227

    Google Scholar 

  • Caravaca F, Alguacil MM, Hernández JA, Roldán A (2005) Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants. Plant Sci 169(1):191–197

    CAS  Google Scholar 

  • Cho K, Toler H, Lee J, Ownley B, Stutz JC, Moore JL, Augé RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163(5):517–528

    CAS  PubMed  Google Scholar 

  • Cseresnyés I, Takács T, Végh KR, Anton A, Rajkai K (2013) Electrical impedance and capacitance method: a new approach for detection of functional aspects of arbuscular mycorrhizal colonization in maize. Eur J Soil Biol 54:25–31

    Google Scholar 

  • Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Nguyen HT (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci 5(244):1–12

    Google Scholar 

  • Disante KB, Fuentes D, Cortina J (2011) Response to drought of Zn-stressed Quercus suber L. seedlings. Environ Exp Bot 70(2–3):96–103

    CAS  Google Scholar 

  • Doubková P, Vlasáková E, Sudová R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370:149–161

    Google Scholar 

  • Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM (2013) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201:42–51

    PubMed  Google Scholar 

  • Estrada-Luna AA, Davies FT Jr (2003) Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated Chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. J Plant Physiol 160(9):1073–1083

    CAS  PubMed  Google Scholar 

  • Estrada-Luna AA, Davies FT Jr, Egilla JN (2000) Mycorrhizal fungi enhancement of growth and gas exchange of micropropagated guava plantlets (Psidium guajava L.) during ex vitro acclimatization and plant establishment. Mycorrhiza 10(1):1–8

    CAS  Google Scholar 

  • Farahani A, Lebaschi H, Hussein M, Hussein SA, Reza VA, Jahanfar D (2008) Effects of arbuscular mycorrhizal fungi, different levels of phosphorus and drought stress on water use efficiency: relative water content and praline accumulation rate of coriander (Coriandrum sativum L.). J Med Plant Res 2:125–131

    Google Scholar 

  • Foo E, Reid JB (2013) Strigolactones: new physiological roles for an ancient signal. J Plant Growth Regul 32(2):429–442

    CAS  Google Scholar 

  • Gaspar T, Penel C, Hadege D, Greppin H (1991) Biochemical, molecular and physiological aspects of plant peroxidases. In: Lobarzewski J, Greppin H, Penel C, Gaspar T (eds) Plant peroxidases. Geneva: Imprimerie Nationale, University of Geneva pp 249–280

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20(8):519–530

    Google Scholar 

  • Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A (2013) Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manag 117:106–114

    Google Scholar 

  • Goicoechea N, Merino S, Sánchez-Díaz M (2005) Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. J Plant Physiol 162(1):27–35

    CAS  PubMed  Google Scholar 

  • Goicoechea N, Bettoni MM, Fuertes-Mendizabal T, González-Murua C and Aranjuelo I (2016) Durum wheat quality traits affected by mycorrhizal inoculation, water availability and atmospheric CO2 concentration. Crop and Pasture Sci 67(2):147–155

    Google Scholar 

  • Grümberg BC, Urcelay C, Shroeder MA, Vargas-Gil S, Luna CM (2015) The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. Biol Fertil Soils 51(1):1–10

    Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo Bote JA, García Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175(3):554–564

    CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61(6):1041–1052

    CAS  PubMed  Google Scholar 

  • Huang Z, Zou Z, He C, He Z, Zhang Z, Li J (2011) Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit. Plant Soil 339(1–2):391–399

    Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates—solubilization mechanisms. Soil Bio Bioche 27(3):257–263

    Google Scholar 

  • Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B (2005) Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. Plant Physiol 139(3):1401–1410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M and Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiol 47(1):141–153

    Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1991) The effect of soil disturbance on vesicular—arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol 118(3):471–476

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soil 37(1):1–16

    Google Scholar 

  • Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Wang E (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Sci 356(6343):1172–1175

    Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. Journal of chemical ecology 38(6):651–664

    Google Scholar 

  • Kasim WA, Osman ME, Omar MN, El-Daim IAA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32(1):122–130

    CAS  Google Scholar 

  • Khan MSI, Roy SS, Pall KK (2010) Nitrogen and phosphorus efficiency on the growth and yield attributes of capsicum. Aca J Plant Sci 3(2):71–78

    Google Scholar 

  • Klingeman WE, Van Iersel MW, Kang JG, Augé RM, Moore JL, Flanagan PC (2005) Whole-plant gas exchange measurements of mycorrhizal ‘Iceberg’ roses exposed to cyclic drought. Crop Prot 24(4):309–317

    Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A, Sayyed RZ, Hesham AE-L, Dhaliwal HS, Saxena AK (2019) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management: volume 1: rhizobacteria in abiotic stress management. Springer, Singapore, pp 255–308. https://doi.org/10.1007/978-981-13-6536-2_13

    Chapter  Google Scholar 

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V, Dhaliwal HS, Saxena AK (2020a) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501. https://doi.org/10.1016/j.bcab.2020.101501

    Article  Google Scholar 

  • Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS, Saxena AK (2020b) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India Sect B Biol Sci. https://doi.org/10.1007/s40011-019-01151-4

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK (2020c) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748

    CAS  PubMed  Google Scholar 

  • Lindermann RG, Hendrix JW (1982) Evaluation of plant response to colonization by vesicular arbuscular mycorrhizal fungi (A) host variables. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St Paul, MN, pp 69–76

    Google Scholar 

  • Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y and Sun Q (2015) Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol 15(1):152.

    Google Scholar 

  • López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Bouwmeester H (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187(2):343–354

    PubMed  Google Scholar 

  • Ludwig-Müller J (2010) Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. In: Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 169–190

    Google Scholar 

  • Manoharan PT, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K (2010) Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. Eur J Soil Biol 46(2):151–156

    Google Scholar 

  • Marulanda A, Azcon R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119(4):526–533

    CAS  Google Scholar 

  • Meddich A, Jaiti F, Bourzik W, El Asli A, Hafidi M (2015) Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Sci Hortic 192:468–474

    Google Scholar 

  • Medina A, Roldán A, Azcón R (2010) The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. J Environ Manag 91(12):2547–2553

    CAS  Google Scholar 

  • Mirshad PP and Puthur JT (2016) Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.). Environ Monit Assess 188(7):425

    Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):202–216

    Google Scholar 

  • Mosse B (1978) Mycorrhiza and plant growth. In: Structure and Functioning of Plant Populations, Verhandelingen der Koninklike Nederlandse, Akademic van Wetenschappen, Afdeling Natuurkunde, Tweede Reeks, deel 70. North-Holland Publ, Amsterdam, pp 269–298

    Google Scholar 

  • Odebode AC, Ladoye AO and Osonubi O (1997) Effect of Pythium Aphnidermatum and the Arbuscular Mycorrhizal fungus Glomus deserticola on Disease Severity and growth of Pepper. Int J Trop Plant Dis 15:85–92.

    Google Scholar 

  • Olawuyi OJ, Babatunde FE, Njoku CG (2011a) Yield, drought tolerance, early fruiting and flowering of okra (Abelmoschus esculentus) as affected by arbuscular mycorrhiza (Glomus deserticola) and inorganic fertilizer (NPK). In: Proc 2nd technical workshop of the Nigerian organic agric network (NOAN) 12–16 Sept 13–18

    Google Scholar 

  • Olawuyi OJ, Odebode AC, Olakojo SA, Adesoye AI (2011b) Host parasite relationships of maize (Zea mays L.) and Striga lutea (lour) as influenced by Arbuscular mycorrhiza fungi. J Sci Res 10:186–198

    Google Scholar 

  • Olawuyi OJ, Odebode AC, Olakojo SA and Adesoye AI (2012) Variation in maize tolerance to Striga lutea (Lour) and influence of arbuscular mycorrhizal fungi. International Journal of Basic. Appl Inno Res 1(1):1–5

    Google Scholar 

  • Olawuyi OJ, Odebode AC, Babalola BJ, Afolayan ET, Onu CP (2014a) Potentials of arbuscular mycorrhiza fungus in tolerating drought of maize (Zea mays L.). Am J Plant Sci 5:779–786

    Google Scholar 

  • Olawuyi OJ, Odebode AC, Olakojo SA, Popoola OO, Akanmu AO, Izenigu JO (2014b) Host pathogen interaction of maize (Zea mays L.) and Aspergillus Niger as influenced by mycorrhizal fungi (Glomus deserticola). Arch Agron Soil Sci 60:1577–1591

    Google Scholar 

  • Omirou M, Ioannides IM, Ehaliotis C (2013) Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots, but leads to improved colonization and plant response under water stress only. Appl Soil Ecol 63:112–119

    Google Scholar 

  • Ortas I, Sari N, Akpinar Ç, Yetisir H (2011) Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Sci Hortic 128(2):92–98

    CAS  Google Scholar 

  • Ortas I (2012) Do maize and pepper plants depend on mycorrhizae in terms of phosphorus and zinc uptake?. J Plant Nutr 35(11):1639–1656

    Google Scholar 

  • Osonubi O, Mulongoy K, Awotoye OO, Atayese MO, Okali DUU (1991) Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant Soil 136(1):131–143

    Google Scholar 

  • Pal A, Pandey S (2017) Symbiosis of arbuscular mycorrhizal fungi and Pennisetum glaucum l. improves plant growth and glomalin-related soil protein in barren soil. Int J Sci Invent Today 6(6):783–792

    Google Scholar 

  • Parent B, Hachez C, Redondo E, Simonneau T, Chaumont F, Tardieu F (2009) Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol 149(4):2000–2012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pavithra D, Yapa N (2018) Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Groundw Sustain Dev 7:490–494

    Google Scholar 

  • Pedranzani H, Rodríguez-Rivera M, Gutiérrez M, Porcel R, Hause B, Ruiz-Lozano JM (2016) Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 26(2):141–152

    CAS  PubMed  Google Scholar 

  • Pereira JS, Chaves MM (1995) Plant responses to drought under climate change in Mediterranean-type ecosystems. In: Global change and Mediterranean-type ecosystems. Springer, New York, pp 140–160

    Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55(403):1743–1750

    CAS  PubMed  Google Scholar 

  • Porcel R, Gómez M, Kaldenhoff R, Ruiz-Lozano JM (2005) Impairment of NtAQP1 gene expression in tobacco plants does not affect root colonisation pattern by arbuscular mycorrhizal fungi but decreases their symbiotic efficiency under drought. Mycorrhiza 15(6):417–423

    CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60(3):389–404

    CAS  PubMed  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defense responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Cambridge, MA

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Cambridge, MA

    Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23(7): 515–531

    Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13(6):309–317

    Google Scholar 

  • Ruíz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869

    PubMed  Google Scholar 

  • Ruíz-Sánchez M, Armada E, Muñoz Y, de Salamone IEG, Aroca R, Ruíz-Lozano JM, Azcón R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168(10):1031–1037

    PubMed  Google Scholar 

  • Ruiz‐Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo‐Jiménez B, Porcel R and López‐Ráez JA (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell & Environment 39(2):441–452

    Google Scholar 

  • Sadhana B (2014) Arbuscular Mycorrhizal Fungi (AMF) as a biofertilizer-a review. Int J Curr Microbiol App Sci 3(4):384–400

    Google Scholar 

  • Sannazzaro AI, Ruiz OA, Alberto EO, Menéndez AB (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285(1–2):279–287

    CAS  Google Scholar 

  • Schaarschmidt S, Roitsch T, Hause B (2006) Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. J Exp Bot 57(15):4015–4023

    CAS  PubMed  Google Scholar 

  • Seymen M, Türkmen O, Paksoy M (2015) Bacteria inoculation effects on yield, yield components and mineral contents of (Capsicum annum L.) bell pepper. Int J Agric economic. Development 3(1):29

    Google Scholar 

  • Sieverding E, Friedrichsen J, Suden W (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Technical Cooperation, Federal Repuplic of Germany, Eschborn

    Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Sheffield J, Wood EF and Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491(7424):435–438

    Google Scholar 

  • Smith S, Read D (2008) Colonization of roots and anatomy of arbuscular mycorrhiza. Mycorrhizal Symbiosis. Academic Press: London: 42–90

    Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, James TY (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Song J, Xin XA, Xie X and Zhao B (2018) Arbuscular mycorrhizal fungal 14-3-3 proteins are involved in arbuscule formation and responses to abiotic stresses during AM symbiosis. Frontiers in microbiology 9:91.

    Google Scholar 

  • Tejeda-Sartorius M, Martínez de la Vega O, Délano-Frier JP (2008) Jasmonic acid influences mycorrhizal colonization in tomato plants by modifying the expression of genes involved in carbohydrate partitioning. Physiol Plant 133(2):339–353

    CAS  PubMed  Google Scholar 

  • Tiwari V, Chaturvedi AK, Mishra A, Jha B (2015) Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiata enhances salinity and drought endurance in transgenic groundnut (Arachis hypogaea) and acts as a transcription factor. PLoS One 10(7):e0131567

    PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    CAS  PubMed  Google Scholar 

  • Tsoata E, Njock SR, Youmbi E, Nwaga D (2015) Early effects of water stress on some biochemical and mineral parameters of mycorrhizal Vigna subterranea (L.) Verdc. (Fabaceae) cultivated in Cameroon. Int J Agron Agric Res 7:21–35

    Google Scholar 

  • Turrini A, Sbrana C, Nuti MP, Pietrangeli BM, Giovannetti M (2005) Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266(1–2):69–75

    Google Scholar 

  • Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68(1):122–129

    CAS  PubMed  Google Scholar 

  • Varga SS, Korányi P, Preininger É, Gyurján I (1994) Artificial associations between Daucus and nitrogen-fixing Azotobacter cells in vitro. Physiol Plant 90(4):786–790

    Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132

    CAS  PubMed  Google Scholar 

  • Walter MH, Floss DS, Strack D (2010) Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232(1):1–17

    CAS  PubMed  Google Scholar 

  • Wilcox HE, Mycorrhizal Associations (1990) In: Nakas JP, Hagedorn C (eds) Biotechnology of plant-microbe interactions. McGraw Hill, New York, pp 227–255

    Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163(4):417–425

    CAS  PubMed  Google Scholar 

  • Wu QS, Xia RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44(1):122–128

    Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, New York, pp 305–332

    Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi. Volume 1: diversity and enzymes perspectives. Springer, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019c) Recent advancement in white biotechnology through fungi. Volume 3: perspective for sustainable environments. Springer, Cham

    Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important Fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer, Cham

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020b) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020c) Advances in plant microbiome and sustainable agriculture: diversity and biotechnological applications. Springer, Singapore

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020d) Advances in plant microbiome and sustainable agriculture: functional annotation and future challenges. Springer, Singapore

    Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020e) Plant microbiomes for sustainable agriculture. Springer, Cham

    Google Scholar 

  • Yang Y, Song Y, Scheller HV, Ghosh A, Ban Y, Chen H and Tang M (2015) Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biol Biochem 86:146–158

    Google Scholar 

  • Yooyongwech S, Samphumphuang T, Tisarum R, Theerawitaya C, Cha-Um S (2016) Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci Hortic 198:107–117

    CAS  Google Scholar 

  • Zhang Y, Yao Q, Li J, Hu Y, Chen J (2014) Growth response and nutrient uptake of Eriobotrya japonica plants inoculated with three isolates of arbuscular mycorrhizal fungi under water stress condition. J Plant Nutr 37:690–703

    CAS  Google Scholar 

  • Zhang Y, Yao Q, Li J, Wang Y, Liu X, Hu Y, Chen J (2015) Contributions of an arbuscular mycorrhizal fungus to growth and physiology of loquat (Eriobotrya japonica) plants subjected to drought stress. Mycol Prog 14(10):84

    Google Scholar 

  • Zhang Y, Hu J, Bai J, Wang J, Yin R, Wang J, Lin X (2018) Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Sci Total Environ 628:282–290

    PubMed  Google Scholar 

  • Zhou JR, Fordyce EJ, Raboy V, Dickinson DB, Wong MS, Burns RA, Erdman Jr JW (1992) Reduction of phytic acid in soybean products improves zinc bioavailability in rats. The J Nutri 122(12):2466–2473

    Google Scholar 

  • Zhao R, Guo W, Bi N, Guo J, Wang L, Zhao J, Zhang J (2015) Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl Soil Ecol 88:41–49

    Google Scholar 

  • Zou YN, Huang YM, Wu QS, He XH (2015) Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. Mycorrhiza 25(2):143–152

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to Director, Dayalbagh Educational Institute (Deemed University), Agra for providing facilities and DG also acknowledge Department of Science and Technology (DST) for INSPIRE research fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goyal, D., Mishra, S., Dantu, P.K. (2020). Arbuscular Mycorrhizae Associations and Role in Mitigation of Drought Stress in Plants. In: Yadav, A., Mishra, S., Kour, D., Yadav, N., Kumar, A. (eds) Agriculturally Important Fungi for Sustainable Agriculture. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-48474-3_3

Download citation

Publish with us

Policies and ethics