Skip to main content

Measurement of Heat Transfer Rates under a Liquid Drop During Dropwise Condensation

  • Chapter
  • First Online:
Drop Dynamics and Dropwise Condensation on Textured Surfaces

Part of the book series: Mechanical Engineering Series ((MES))

  • 746 Accesses

Abstract

The quasi-periodic and statistical nature of drop formation, along with very high heat transfer coefficients at low operating temperature difeerentials, makes the experimental determintaion of transfer coefficients quite challenging. We demonstrate the use of high resolution Liquid Crystal Thermography (LCT) coupled with digital videography to measure the spatial distribution of temperature during dropwise condensation in the pendant mode over a polyethylene substrate. Using a one-dimensional heat transfer model, heat flux profiles through individual condensing droplets have been obtained. The measured heat flux as a function of drop diameter matches published data for large drop sizes but fails for small drops (< 0.4 mm) where the thermal resistance of the LCT sheet is a limiting factor. To a first approximation, the present work shows that drop size can be correlated to the local heat flux. It is demonstrated that the average condensation heat flux over a surface can be obtained entirely from the drop-size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Area, m2

D :

Diameter, m

g :

Acceleration due to gravity, m/s2

H, S, I:

Hue, Saturation, Intensity scale, −

h :

Heat transfer coefficient, W/m2K

h fg :

Latent heat, J/kg

K 1 :

Constant, −

k :

Thermal conductivity, W/mK

M :

Molecular weight, kg/kmol

n :

Number density, m−2

P :

Pressure, N/m2

\( \dot{Q} \) :

Heat transfer rate, W

q :

Heat flux, W/m2

R :

Gas constant, J/K-mole

R, G, B:

Red, Green, Blue scale, −

T :

Temperature, K

\( \overline{T} \) :

Average temperature, K

t :

Thickness, m

υ :

Specific volume, m3/kg

λ :

Wavelength of light, m

\( \overset{\frown }{\sigma } \) :

Accommodation coefficient, −

σ :

Surface tension, N/m

ρ :

Density, kg/m3

avg:

Average value

exp:

Experimental

liq:

Liquid

max:

Maximum

min:

Minimum

pix:

Digitized pixel

sat:

Saturation

sub:

Substrate

total:

Total value

vap:

Vapor

References

  • Abu-Orabi, M. (1998). Modeling of heat transfer in dropwise condensation. International Journal of Heat and Mass Transfer, 41, 81–87.

    Article  Google Scholar 

  • Bansal, G. D., Khandekar, S., & Muralidhar, K. (2009). Measurement of Heat Transfer during Dropwise Condensation of Water on Polyethylene, Nanoscale and Microscale Thermophysical Engineering, 13(3), 184–201.

    Google Scholar 

  • Beysens, D. (2006). Dew nucleation and growth. Comptes Rendus Physique, 7, 1082–1100.

    Article  Google Scholar 

  • Briscoe, B. J., Williams, D. R., & Galvin, K. P. (2005). Condensation on hydrosol modified polyethylene. Colloids and Surfaces A, 264, 101–105.

    Article  Google Scholar 

  • Carey, V. P. (2008). Liquid-vapor phase-change phenomena (2nd ed., pp. 45–472). New York: Taylor and Francis Group LLC.

    Google Scholar 

  • Collier, J.G., Thome, J. R., (1996). Convective Boiling and Condensation, 3rd ed., Oxford Engineering Science Series, Clarendon Press, ISBN-10: 0198562969.

    Google Scholar 

  • Goldstein, R. J., Ibele, W. E., Patankar, S. V., Simon, T. W., Kuehn, T. H., Strykowski, P. J., Tamma, K. K., Heberlein, J. V. R., Davidson, J. H., Bischof, J., Kulacki, F. A., Kortshagen, U., Garrick, S., & Srinivasan, V. (2006). Heat transfer—a review of 2003 literature. International Journal of Heat and Mass Transfer, 49, 451–534.

    Article  Google Scholar 

  • Graham, C., & Griffith, P. (1973). Dropwise size distribution and heat transfer in dropwise condensation. International Journal of Heat and Mass Transfer, 16, 337–346.

    Article  Google Scholar 

  • Hay, J. L., & Hollingsworth, D. K. (1998). Calibration of micro-encapsulated liquid crystals using hue angle and a dimensionless temperature. Experimental Thermal and Fluid Sciences, 18, 251–257.

    Article  Google Scholar 

  • Höhmann, C., & Stephan, P. (2002). Microscale temperature measurement at an evaporating liquid meniscus. Experimental Thermal and Fluid Sciences, 26, 157–162.

    Article  Google Scholar 

  • Kananeh, B., Rausch, M. H., Fröba, A. P., & Leipertz, A. (2006). Experimental study of dropwise condensation on plasma-ion implanted stainless steel tubes. International Journal of Heat and Mass Transfer, 49, 5018–5026.

    Article  Google Scholar 

  • Leipertz, A., & Fröba A. P. (2006). Improvement of condensation heat transfer by surface modification. In Proceedings of the 7th ASME, Heat and Mass Transfer Conference, IIT Guwahati, India (Vol. K7, pp. k85–k99).

    Google Scholar 

  • Ma, X., Chen, J., Xu, D., Lin, J., Ren, C., & Long, Z. (2002). Influence of processing conditions of polymer film on dropwise condensation heat transfer. International Journal of Heat and Mass Transfer, 45, 3405–3411.

    Article  Google Scholar 

  • Muwanga, R., & Hassan, I. (2006). Local heat transfer measurements in microchannels using liquid crystal thermography: Methodology development and validation. ASME Journal of Heat Transfer, 128, 617–627.

    Article  Google Scholar 

  • Rose, J. W. (1981). Dropwise condensation theory. International Journal of Heat and Mass Transfer, 24, 191–194.

    Article  Google Scholar 

  • Rose, J. W. (1998). Condensation heat transfer fundamentals. Transactions of the AIChE Journal, 76A, 143–152.

    Google Scholar 

  • Rose, J. W. (2002). Dropwise condensation theory and experiment: A review. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 216, 115–128.

    Google Scholar 

  • Rose, J. W. (2004). Surface tension effects and enhancements of condensation heat transfer. Chemical Engineering Research and Design, 82, 419–429.

    Article  Google Scholar 

  • Stasiek, J., Stasiek, A., Jewartowski, M., & Collins, M. W. (2006). Liquid crystal thermography and true-color digital image processing. Optics and Laser Technology, 38, 243–256.

    Article  Google Scholar 

  • Van der Geld, C. W. M., Ganzevles, F. L. A., Simons, C. T. P. F., & Weitz, F. (2001). Geometry adaptations to improve the performance of compact polymer condensers. Transactions of the IChemE (Part A), 79, 357–362.

    Article  Google Scholar 

  • Vemuri, S., Kim, K. J., Wood, B. D., Govindaraju, S., & Bell, T. W. (2006). Long term testing for dropwise condensation using self-assembled monolayer coating of n-octadecyl mercaptan. Applied Thermal Engineering, 26, 421–429.

    Article  Google Scholar 

  • Venables, J. A. (2000). Introduction to surface and thin film processes (1st ed., pp. 144–165). Cambridge: Cambridge University Press. ISBN-10 #0521785006.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bansal, G., Khandekar, S., Muralidhar, K. (2020). Measurement of Heat Transfer Rates under a Liquid Drop During Dropwise Condensation. In: Drop Dynamics and Dropwise Condensation on Textured Surfaces. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-48461-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48461-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48460-6

  • Online ISBN: 978-3-030-48461-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics