Skip to main content

Functional Magnetic Resonance Imaging

  • Chapter
  • First Online:
Neuroimaging Techniques in Clinical Practice

Abstract

Functional magnetic resonance imaging (fMRI) is an advanced imaging technique used to map certain brain functions preoperatively—the information obtained is used to assess risk and operative feasibility while helping to guide the surgical approach. fMRI has been validated for motor mapping, language lateralization, and to a lesser extent language localization (due, in part, to the evolution of our understanding of language function). This chapter aims to provide an insight into preoperative fMRI beginning with brain physiology to a discussion of recent advancements while providing tips on how to approach post-processing and image assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, et al. Voxel-based lesion–symptom mapping. Nat Neurosci. 2003;6(5):448–50.

    CAS  PubMed  Google Scholar 

  2. Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 2005;4(8):476–86.

    PubMed  Google Scholar 

  3. Ojemann GA. Functional mapping of cortical language areas in adults. Intraoperative approaches. Adv Neurol. 1993;63:155–63.

    CAS  PubMed  Google Scholar 

  4. Wada J, Rasmussen T. Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. J Neurosurg. 1960;17(2):266–82.

    Google Scholar 

  5. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci. 1990;87(24):9868–72.

    CAS  PubMed  Google Scholar 

  6. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci. 1992;89(12):5675–9.

    CAS  PubMed  Google Scholar 

  7. Mueller WM, Yetkin FZ, Hammeke TA, Morris GL, Swanson SJ, Reichert K, et al. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery. 1996;39(3):515–20; discussion 520–1.

    CAS  PubMed  Google Scholar 

  8. Yousry TA, Schmid UD, Jassoy AG, Schmidt D, Eisner WE, Reulen HJ, et al. Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology. 1995;195(1):23–9.

    CAS  PubMed  Google Scholar 

  9. Kapsalakis IZ, Kapsalaki EZ, Gotsis ED, Verganelakis D, Toulas P, Hadjigeorgiou G, et al. Preoperative evaluation with fMRI of patients with intracranial gliomas [Internet]. Radiol Res Pract. 2012 [cited 2018 Aug 26]. Available from: https://www.hindawi.com/journals/rrp/2012/727810/.

  10. Bizzi A, Blasi V, Falini A, Ferroli P, Cadioli M, Danesi U, et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology. 2008;248(2):579–89.

    PubMed  Google Scholar 

  11. Krings T, Reinges MH, Erberich S, Kemeny S, Rohde V, Spetzger U, et al. Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry. 2001;70(6):749–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hirsch J, Ruge MI, Kim KH, Correa DD, Victor JD, Relkin NR, et al. An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery. 2000;47(3):711–21; discussion 721–2.

    CAS  PubMed  Google Scholar 

  13. Roux F-E, Boulanouar K, Lotterie J-A, Mejdoubi M, LeSage JP, Berry I. Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery. 2003;52(6):1335–45; discussion 1345–7.

    PubMed  Google Scholar 

  14. Pouratian N, Bookheimer SY, Rex DE, Martin NA, Toga AW. Utility of preoperative functional magnetic resonance imaging for identifying language cortices in patients with vascular malformations. J Neurosurg. 2002;97(1):21–32.

    PubMed  Google Scholar 

  15. Petrovich N, Holodny AI, Tabar V, Correa DD, Hirsch J, Gutin PH, et al. Discordance between functional magnetic resonance imaging during silent speech tasks and intraoperative speech arrest. J Neurosurg. 2005;103(2):267–74.

    PubMed  Google Scholar 

  16. Naidich TP, Hof PR, Gannon PJ, Yousry TA, Yousry I. Anatomic substrates of language: emphasizing speech. Neuroimaging Clin N Am. 2001;11(2):305–41, ix.

    CAS  PubMed  Google Scholar 

  17. Binder JR. FMRI is a valid noninvasive alternative to Wada testing. Epilepsy Behav. 2011;20(2):214–22.

    PubMed  Google Scholar 

  18. Swanson SJ, Sabsevitz DS, Hammeke TA, Binder JR. Functional magnetic resonance imaging of language in epilepsy. Neuropsychol Rev. 2007;17(4):491–504.

    PubMed  Google Scholar 

  19. Krishnan R, Raabe A, Hattingen E, Szelényi A, Yahya H, Hermann E, et al. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery. 2004;55(4):904–14; discusssion 914–5.

    PubMed  Google Scholar 

  20. Petrella JR, Shah LM, Harris KM, Friedman AH, George TM, Sampson JH, et al. Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable brain tumors. Radiology. 2006;240(3):793–802.

    PubMed  Google Scholar 

  21. Cosgrove GR, Buchbinder BR, Jiang H. Functional magnetic resonance imaging for intracranial navigation. Neurosurg Clin N Am. 1996;7(2):313–22.

    CAS  PubMed  Google Scholar 

  22. Nimsky C, Ganslandt O, Von Keller B, Romstöck J, Fahlbusch R. Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology. 2004;233(1):67–78.

    PubMed  Google Scholar 

  23. Schulder M, Maldjian JA, Liu WC, Holodny AI, Kalnin AT, Mun IK, et al. Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurg. 1998;89(3):412–8.

    CAS  PubMed  Google Scholar 

  24. Hartkens T, Hill DLG, Castellano-Smith AD, Hawkes DJ, Maurer CR, Martin AJ, et al. Measurement and analysis of brain deformation during neurosurgery. IEEE Trans Med Imaging. 2003;22(1):82–92.

    CAS  PubMed  Google Scholar 

  25. Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R. Intraoperative compensation for brain shift. Surg Neurol. 2001;56(6):357–64; discussion 364–5.

    CAS  PubMed  Google Scholar 

  26. Stippich C, Kress B, Ochmann H, Tronnier V, Sartor K. [Preoperative functional magnetic resonance tomography (FMRI) in patients with rolandic brain tumors: indication, investigation strategy, possibilities and limitations of clinical application]. ROFO Fortschr Geb Rontgenstr Nuklearmed. 2003;175(8):1042–50.

    Google Scholar 

  27. Lurito JT, Dzemidzic M. Determination of cerebral hemisphere language dominance with functional magnetic resonance imaging. Neuroimaging Clin N Am. 2001;11(2):355–63, x.

    CAS  PubMed  Google Scholar 

  28. Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011;22(2):133–9.

    PubMed  PubMed Central  Google Scholar 

  29. Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, et al. The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med. 1995;34(1):4–10.

    CAS  PubMed  Google Scholar 

  30. Mansfield P. Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys. 1977;10(3):L55.

    CAS  Google Scholar 

  31. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–7.

    CAS  PubMed  Google Scholar 

  32. Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241(4864):462–4.

    CAS  PubMed  Google Scholar 

  33. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG. Energy on demand. Science. 1999;283(5401):496–7.

    CAS  PubMed  Google Scholar 

  34. Aguirre GK, Zarahn E, D’esposito M. The variability of human, BOLD hemodynamic responses. NeuroImage. 1998;8(4):360–9.

    CAS  PubMed  Google Scholar 

  35. Menon RS, Kim SG. Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends Cogn Sci. 1999;3(6):207–16.

    CAS  PubMed  Google Scholar 

  36. Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med. 1998;39(6):855–64.

    CAS  PubMed  Google Scholar 

  37. Friston KJ, Holmes AP, Price CJ, Büchel C, Worsley KJ. Multisubject fMRI studies and conjunction analyses. NeuroImage. 1999;10(4):385–96.

    CAS  PubMed  Google Scholar 

  38. D’Esposito M, Zarahn E, Aguirre GK. Event-related functional MRI: implications for cognitive psychology. Psychol Bull. 1999;125(1):155–64.

    PubMed  Google Scholar 

  39. Liu TT. Efficiency, power, and entropy in event-related fMRI with multiple trial types. Part II: design of experiments. NeuroImage. 2004;21(1):401–13.

    PubMed  Google Scholar 

  40. Chen C-C, Tyler CW, Baseler HA. Statistical properties of BOLD magnetic resonance activity in the human brain. NeuroImage. 2003;20(2):1096–109.

    PubMed  Google Scholar 

  41. Buxton RB. The physics of functional magnetic resonance imaging (fMRI). Rep Prog Phys. 2013;76(9):096601.

    PubMed  PubMed Central  Google Scholar 

  42. Zarahn E, Aguirre GK, D’Esposito M. Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. NeuroImage. 1997;5(3):179–97.

    CAS  PubMed  Google Scholar 

  43. Glover GH. Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage. 1999;9(4):416–29.

    CAS  PubMed  Google Scholar 

  44. Boynton GM, Engel SA, Glover GH, Heeger DJ. Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci. 1996;16(13):4207–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen C-C, Tyler CW. Spectral analysis of fMRI signal and noise. In: Onozuka M, Yen C-T, editors. Novel trends in brain science: brain imaging, learning and memory, stress and fear, and pain [Internet]. Tokyo: Springer Japan; 2008 [cited 2018 Aug 28]. p. 63–76. Available from: https://doi.org/10.1007/978-4-431-73242-6_4.

  46. Maus B, van Breukelen GJP, Goebel R, Berger MPF. Optimization of blocked designs in fMRI studies. Psychometrika. 2010;75(2):373–90.

    Google Scholar 

  47. Stippich C, Heiland S, Tronnier V, Mohr A, Sartor K. [Functional magnetic resonance imaging: physiological background, technical aspects and prerequisites for clinical use]. ROFO Fortschr Geb Rontgenstr Nuklearmed. 2002;174(1):43–9.

    Google Scholar 

  48. Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med. 1995;34(1):65–73.

    CAS  PubMed  Google Scholar 

  49. Zaitsev M, Hennig J, Speck O. Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med. 2004;52(5):1156–66.

    CAS  PubMed  Google Scholar 

  50. Zeng H, Constable RT. Image distortion correction in EPI: comparison of field mapping with point spread function mapping. Magn Reson Med. 2002;48(1):137–46.

    PubMed  Google Scholar 

  51. Sladky R, Friston KJ, Tröstl J, Cunnington R, Moser E, Windischberger C. Slice-timing effects and their correction in functional MRI. NeuroImage. 2011;58(2):588–94.

    PubMed  PubMed Central  Google Scholar 

  52. Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, et al. Analysis of fMRI time-series revisited. NeuroImage. 1995;2(1):45–53.

    CAS  PubMed  Google Scholar 

  53. Worsley KJ, Liao CH, Aston J, Petre V, Duncan GH, Morales F, et al. A general statistical analysis for fMRI data. NeuroImage. 2002;15(1):1–15.

    CAS  PubMed  Google Scholar 

  54. Smith SM. Overview of fMRI analysis. Br J Radiol. 2004;77(2):S167–75.

    PubMed  Google Scholar 

  55. Parrish TB, Gitelman DR, LaBar KS, Mesulam MM. Impact of signal-to-noise on functional MRI. Magn Reson Med. 2000;44(6):925–32.

    CAS  PubMed  Google Scholar 

  56. Stippich C, Blatow M, Durst A, Dreyhaupt J, Sartor K. Global activation of primary motor cortex during voluntary movements in man. NeuroImage. 2007;34(3):1227–37.

    PubMed  Google Scholar 

  57. Stippich C, Ochmann H, Sartor K. Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neurosci Lett. 2002;331(1):50–4.

    CAS  PubMed  Google Scholar 

  58. Stippich C, Romanowski A, Nennig E, Kress B, Sartor K. Time-efficient localization of the human secondary somatosensory cortex by functional magnetic resonance imaging. Neurosci Lett. 2005;381(3):264–8.

    CAS  PubMed  Google Scholar 

  59. Stippich C, Romanowski A, Nennig E, Kress B, Hähnel S, Sartor K. Fully automated localization of the human primary somatosensory cortex in one minute by functional magnetic resonance imaging. Neurosci Lett. 2004;364(2):90–3.

    CAS  PubMed  Google Scholar 

  60. Stippich C, Kapfer D, Hempel E, Borgulya G, Bongers A, Heiland S, et al. Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging protocol. Neurosci Lett. 2000;285(2):155–9.

    CAS  PubMed  Google Scholar 

  61. Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, et al. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain J Neurol. 1997;120(Pt 1):141–57.

    Google Scholar 

  62. Horsley V. The Linacre Lecture on the function of the so-called motor area of the brain. Br Med J. 1909;2(2533):121–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Stippich C, editor. Clinical functional MRI: presurgical functional neuroimaging [Internet]. 2nd ed. Berlin, Heidelberg: Springer-Verlag; 2015 [cited 2018 Aug 19]. (Diagnostic Imaging). Available from: www.springer.com/de/book/9783662451229

  64. Mizuguchi N, Nakata H, Hayashi T, Sakamoto M, Muraoka T, Uchida Y, et al. Brain activity during motor imagery of an action with an object: a functional magnetic resonance imaging study. Neurosci Res. 2013;76(3):150–5.

    PubMed  Google Scholar 

  65. Blatow M, Reinhardt J, Riffel K, Nennig E, Wengenroth M, Stippich C. Clinical functional MRI of sensorimotor cortex using passive motor and sensory stimulation at 3 tesla. J Magn Reson Imaging. 2011;34(2):429–37.

    PubMed  Google Scholar 

  66. Stippich C, Hofmann R, Kapfer D, Hempel E, Heiland S, Jansen O, et al. Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging. Neurosci Lett. 1999;277(1):25–8.

    CAS  PubMed  Google Scholar 

  67. van der Zwaag W, Gruetter R, Martuzzi R. Stroking or buzzing? A comparison of somatosensory touch stimuli using 7 Tesla fMRI. PLoS One. 2015;10(8):e0134610.

    PubMed  PubMed Central  Google Scholar 

  68. Maldjian JA, Gottschalk A, Patel RS, Pincus D, Detre JA, Alsop DC. Mapping of secondary somatosensory cortex activation induced by vibrational stimulation: an fMRI study. Brain Res. 1999;824(2):291–5.

    CAS  PubMed  Google Scholar 

  69. Halsband U, Ito N, Tanji J, Freund HJ. The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain J Neurol. 1993;116(Pt 1):243–66.

    Google Scholar 

  70. Rao SM, Binder JR, Bandettini PA, Hammeke TA, Yetkin FZ, Jesmanowicz A, et al. Functional magnetic resonance imaging of complex human movements. Neurology. 1993;43(11):2311–8.

    CAS  PubMed  Google Scholar 

  71. Manthey S, Schubotz RI, von Cramon DY. Premotor cortex in observing erroneous action: an fMRI study. Brain Res Cogn Brain Res. 2003;15(3):296–307.

    PubMed  Google Scholar 

  72. Shah KB, Hayman LA, Chavali LS, Hamilton JD, Prabhu SS, Wangaryattawanich P, et al. Glial tumors in Brodmann area 6: spread pattern and relationships to motor areas. Radiographics. 2015;35(3):793–803.

    PubMed  PubMed Central  Google Scholar 

  73. Duffau H, Capelle L, Denvil D, Gatignol P, Sichez N, Lopes M, et al. The role of dominant premotor cortex in language: a study using intraoperative functional mapping in awake patients. NeuroImage. 2003;20(4):1903–14.

    PubMed  Google Scholar 

  74. Gordon AM, Lee J-H, Flament D, Ugurbil K, Ebner TJ. Functional magnetic resonance imaging of motor, sensory, and posterior parietal cortical areas during performance of sequential typing movements. Exp Brain Res. 1998;121(2):153–66.

    CAS  PubMed  Google Scholar 

  75. Tanji J. The supplementary motor area in the cerebral cortex. Neurosci Res. 1994;19(3):251–68.

    CAS  PubMed  Google Scholar 

  76. Van Oostende S, Van Hecke P, Sunaert S, Nuttin B, Marchal G. FMRI studies of the supplementary motor area and the premotor cortex. NeuroImage. 1997;6(3):181–90.

    PubMed  Google Scholar 

  77. Laplane D, Talairach J, Meininger V, Bancaud J, Orgogozo JM. Clinical consequences of corticectomies involving the supplementary motor area in man. J Neurol Sci. 1977;34(3):301–14.

    CAS  PubMed  Google Scholar 

  78. Wiese H, Stude P, Nebel K, de Greiff A, Forsting M, Diener HC, et al. Movement preparation in self-initiated versus externally triggered movements: an event-related fMRI-study. Neurosci Lett. 2004;371(2):220–5.

    CAS  PubMed  Google Scholar 

  79. Heun R, Jessen F, Klose U, Erb M, Granath DO, Grodd W. Response-related fMRI analysis during encoding and retrieval revealed differences in cerebral activation by retrieval success. Psychiatry Res. 2000;99(3):137–50.

    CAS  PubMed  Google Scholar 

  80. Kwan CL, Crawley AP, Mikulis DJ, Davis KD. An fMRI study of the anterior cingulate cortex and surrounding medial wall activations evoked by noxious cutaneous heat and cold stimuli. Pain. 2000;85(3):359–74.

    CAS  PubMed  Google Scholar 

  81. Umemoto A, Holroyd CB. Chapter 8—Exploring individual differences in task switching: Persistence and other personality traits related to anterior cingulate cortex function. In: Studer B, Knecht S, editors. Progress in brain research [Internet]. Amsterdam: Elsevier; 2016 [cited 2018 Aug 10]. p. 189–212. (Motivation; vol. 229). Available from: http://www.sciencedirect.com/science/article/pii/S0079612316300632.

  82. Boecker H, Kleinschmidt A, Requardt M, Hänicke W, Merboldt KD, Frahm J. Functional cooperativity of human cortical motor areas during self-paced simple finger movements. A high-resolution MRI study. Brain J Neurol. 1994;117(Pt 6):1231–9.

    Google Scholar 

  83. Stephan KM, Fink GR, Passingham RE, Silbersweig D, Ceballos-Baumann AO, Frith CD, et al. Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J Neurophysiol. 1995;73(1):373–86.

    CAS  PubMed  Google Scholar 

  84. Darling WG, Pizzimenti MA, Rizzo M. Unilateral posterior parietal lobe lesions affect representation of visual space. Vis Res. 2003;43(15):1675–88.

    PubMed  Google Scholar 

  85. Binkofski F, Kunesch E, Classen J, Seitz RJ, Freund HJ. Tactile apraxia: unimodal apractic disorder of tactile object exploration associated with parietal lobe lesions. Brain J Neurol. 2001;124(Pt 1):132–44.

    CAS  Google Scholar 

  86. Kim KHS, Relkin NR, Lee K-M, Hirsch J. Distinct cortical areas associated with native and second languages. Nature. 1997;388(6638):171–4.

    CAS  PubMed  Google Scholar 

  87. Rutten GJM, Ramsey NF, van Rijen PC, Noordmans HJ, van Veelen CWM. Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol. 2002;51(3):350–60.

    CAS  PubMed  Google Scholar 

  88. Janecek JK, Swanson SJ, Sabsevitz DS, Hammeke TA, Raghavan M, Mueller W, et al. Naming outcome prediction in patients with discordant Wada and fMRI language lateralization. Epilepsy Behav. 2013;27(2):399–403.

    PubMed  PubMed Central  Google Scholar 

  89. Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8(5):393–402.

    CAS  PubMed  Google Scholar 

  90. Binder JR. The Wernicke area: modern evidence and a reinterpretation. Neurology. 2015;85(24):2170–5.

    PubMed  PubMed Central  Google Scholar 

  91. Benjamin CF, Walshaw PD, Hale K, Gaillard WD, Baxter LC, Berl MM, et al. Presurgical language fMRI: mapping of six critical regions. Hum Brain Mapp. 2017;38(8):4239–55.

    PubMed  PubMed Central  Google Scholar 

  92. Lazar RM, Antoniello D. Variability in recovery from aphasia. Curr Neurol Neurosci Rep. 2008;8(6):497–502.

    PubMed  Google Scholar 

  93. Dronkers NF, Plaisant O, Iba-Zizen MT, Cabanis EA. Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain J Neurol. 2007;130(Pt 5):1432–41.

    CAS  Google Scholar 

  94. Black DF, Vachha B, Mian A, Faro SH, Maheshwari M, Sair HI, et al. American Society of Functional Neuroradiology—recommended fMRI paradigm algorithms for presurgical language assessment. Am J Neuroradiol. 2017;38(10):E65–73.

    CAS  PubMed  Google Scholar 

  95. Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M, et al. Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology. 1996;46(4):978–84.

    CAS  PubMed  Google Scholar 

  96. Desmond JE, Sum JM, Wagner AD, Demb JB, Shear PK, Glover GH, et al. Functional MRI measurement of language lateralization in Wada-tested patients. Brain J Neurol. 1995;118(Pt 6):1411–9.

    Google Scholar 

  97. Chang EF, Breshears JD, Raygor KP, Lau D, Molinaro AM, Berger MS. Stereotactic probability and variability of speech arrest and anomia sites during stimulation mapping of the language dominant hemisphere. J Neurosurg. 2017;126(1):114–21.

    PubMed  Google Scholar 

  98. Broca P. Perte de la parole. Ramollisement chronique et destruction partielle du lobe antérieur gauche du cerveau. 1861 Jan 1 [cited 2018 Aug 3]. Available from: https://www.scienceopen.com/document?vid=29af89a0-0d10-4792-ae83-f65355456d0d.

  99. Tate MC, Herbet G, Moritz-Gasser S, Tate JE, Duffau H. Probabilistic map of critical functional regions of the human cerebral cortex: Broca’s area revisited. Brain J Neurol. 2014;137(Pt 10):2773–82.

    Google Scholar 

  100. Benzagmout M, Gatignol P, Duffau H. Resection of World Health Organization Grade II gliomas involving Broca’s area: methodological and functional considerations. Neurosurgery. 2007;61(4):741–52; discussion 752–3.

    PubMed  Google Scholar 

  101. Plaza M, Gatignol P, Leroy M, Duffau H. Speaking without Broca’s area after tumor resection. Neurocase. 2009;15(4):294–310.

    PubMed  Google Scholar 

  102. Friederici AD, Opitz B, von Cramon DY. Segregating semantic and syntactic aspects of processing in the human brain: an fMRI investigation of different word types. Cereb Cortex (New York, NY: 1991). 2000;10(7):698–705.

    CAS  Google Scholar 

  103. Sahin NT, Pinker S, Cash SS, Schomer D, Halgren E. Sequential processing of lexical, grammatical, and phonological information within Broca’s area. Science. 2009;326(5951):445–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Tettamanti M, Weniger D. Broca’s area: a supramodal hierarchical processor? Cortex. 2006;42(4):491–4.

    PubMed  Google Scholar 

  105. Lurito JT, Kareken DA, Lowe MJ, Chen SH, Mathews VP. Comparison of rhyming and word generation with FMRI. Hum Brain Mapp. 2000;10(3):99–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Stippich C, Mohammed J, Kress B, Hähnel S, Günther J, Konrad F, et al. Robust localization and lateralization of human language function: an optimized clinical functional magnetic resonance imaging protocol. Neurosci Lett. 2003;346(1–2):109–13.

    CAS  PubMed  Google Scholar 

  107. Stippich C, Rapps N, Dreyhaupt J, Durst A, Kress B, Nennig E, et al. Localizing and lateralizing language in patients with brain tumors: feasibility of routine preoperative functional MR imaging in 81 consecutive patients. Radiology. 2007;243(3):828–36.

    PubMed  Google Scholar 

  108. Yagmurlu K, Middlebrooks EH, Tanriover N, Rhoton AL. Fiber tracts of the dorsal language stream in the human brain. J Neurosurg. 2016;124(5):1396–405.

    PubMed  Google Scholar 

  109. Ius T, Angelini E, Thiebaut de Schotten M, Mandonnet E, Duffau H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. NeuroImage. 2011;56(3):992–1000.

    PubMed  Google Scholar 

  110. van Geemen K, Herbet G, Moritz-Gasser S, Duffau H. Limited plastic potential of the left ventral premotor cortex in speech articulation: evidence from intraoperative awake mapping in glioma patients. Hum Brain Mapp. 2014;35(4):1587–96.

    PubMed  Google Scholar 

  111. Chao LL, Martin A. Representation of manipulable man-made objects in the dorsal stream. NeuroImage. 2000;12(4):478–84.

    CAS  PubMed  Google Scholar 

  112. Fernández G, de Greiff A, von Oertzen J, Reuber M, Lun S, Klaver P, et al. Language mapping in less than 15 minutes: real-time functional MRI during routine clinical investigation. NeuroImage. 2001;14(3):585–94.

    PubMed  Google Scholar 

  113. Roux F-E, Dufor O, Giussani C, Wamain Y, Draper L, Longcamp M, et al. The graphemic/motor frontal area Exner’s area revisited. Ann Neurol. 2009;66(4):537–45.

    PubMed  Google Scholar 

  114. Anderson SW, Damasio AR, Damasio H. Troubled letters but not numbers. Domain specific cognitive impairments following focal damage in frontal cortex. Brain J Neurol. 1990;113(Pt 3):749–66.

    Google Scholar 

  115. Dronkers NF. A new brain region for coordinating speech articulation. Nature. 1996;384(6605):159–61.

    CAS  PubMed  Google Scholar 

  116. Baldo JV, Wilkins DP, Ogar J, Willock S, Dronkers NF. Role of the precentral gyrus of the insula in complex articulation. Cortex J Devoted Study Nerv Syst Behav. 2011;47(7):800–7.

    Google Scholar 

  117. Eickhoff SB, Heim S, Zilles K, Amunts K. A systems perspective on the effective connectivity of overt speech production. Philos Trans A Math Phys Eng Sci. 2009;367(1896):2399–421.

    PubMed  PubMed Central  Google Scholar 

  118. Riecker A, Brendel B, Ziegler W, Erb M, Ackermann H. The influence of syllable onset complexity and syllable frequency on speech motor control. Brain Lang. 2008;107(2):102–13.

    PubMed  Google Scholar 

  119. Tremblay P, Dick AS. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang. 2016;162:60–71.

    PubMed  Google Scholar 

  120. Wernicke C. Der aphasische Symptomencomplex: eine psychologische Studie auf anatomischer Basis. Breslau: Cohn & Weigert; 1874. 80 p.

    Google Scholar 

  121. Dronkers NF, Wilkins DP, Van Valin RD, Redfern BB, Jaeger JJ. Lesion analysis of the brain areas involved in language comprehension. Cognition. 2004;92(1–2):145–77.

    PubMed  Google Scholar 

  122. Leonard MK, Chang EF. Dynamic speech representations in the human temporal lobe. Trends Cogn Sci. 2014;18(9):472–9.

    PubMed  PubMed Central  Google Scholar 

  123. Pillay SB, Stengel BC, Humphries C, Book DS, Binder JR. Cerebral localization of impaired phonological retrieval during rhyme judgment. Ann Neurol. 2014;76(5):738–46.

    PubMed  PubMed Central  Google Scholar 

  124. Kurowski K, Blumstein SE. Phonetic basis of phonemic paraphasias in aphasia: evidence for cascading activation. Cortex J Devoted Study Nerv Syst Behav. 2016;75:193–203.

    Google Scholar 

  125. Klein AP, Sabsevitz DS, Ulmer JL, Mark LP. Imaging of cortical and white matter language processing. Semin Ultrasound CT MR. 2015;36(3):249–59.

    PubMed  Google Scholar 

  126. Upadhyay J, Silver A, Knaus TA, Lindgren KA, Ducros M, Kim D-S, et al. Effective and structural connectivity in the human auditory cortex. J Neurosci. 2008;28(13):3341–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zacà D, Nickerson JP, Deib G, Pillai JJ. Effectiveness of four different clinical fMRI paradigms for preoperative regional determination of language lateralization in patients with brain tumors. Neuroradiology. 2012;54(9):1015–25.

    PubMed  Google Scholar 

  128. Binder JR, Desai RH, Graves WW, Conant LL. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex (New York, NY). 2009;19(12):2767–96.

    PubMed Central  Google Scholar 

  129. Hartwigsen G, Baumgaertner A, Price CJ, Koehnke M, Ulmer S, Siebner HR. Phonological decisions require both the left and right supramarginal gyri. Proc Natl Acad Sci. 2010;107(38):16494–9.

    CAS  PubMed  Google Scholar 

  130. Brennan NP, Peck KK, Holodny A. Language mapping using fMRI and direct cortical stimulation for brain tumor surgery: the good, the bad, and the questionable. Top Magn Reson Imaging. 2016;25(1):1–10.

    PubMed  PubMed Central  Google Scholar 

  131. Maldonado IL, Moritz-Gasser S, de Champfleur NM, Bertram L, Moulinié G, Duffau H. Surgery for gliomas involving the left inferior parietal lobule: new insights into the functional anatomy provided by stimulation mapping in awake patients. J Neurosurg. 2011;115(4):770–9.

    PubMed  Google Scholar 

  132. Benson DF. Aphasia, alexia, and agraphia; 1928. Free Download, Borrow, and Streaming: Internet Archive [Internet] [cited 2018 Aug 16]. Available from: https://archive.org/details/aphasiaalexiaagr00bens.

  133. Corina DP, Loudermilk BC, Detwiler L, Martin RF, Brinkley JF, Ojemann G. Analysis of naming errors during cortical stimulation mapping: implications for models of language representation. Brain Lang. 2010;115(2):101–12.

    PubMed  PubMed Central  Google Scholar 

  134. Middlebrooks EH, Yagmurlu K, Szaflarski JP, Rahman M, Bozkurt B. A contemporary framework of language processing in the human brain in the context of preoperative and intraoperative language mapping. Neuroradiology. 2017;59(1):69–87.

    PubMed  Google Scholar 

  135. Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Springer JA, Kaufman JN, et al. Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex (New York, NY: 1991). 2000;10(5):512–28.

    CAS  Google Scholar 

  136. Ashtari M, Lencz T, Zuffante P, Bilder R, Clarke T, Diamond A, et al. Left middle temporal gyrus activation during a phonemic discrimination task. Neuroreport. 2004;15(3):389–93.

    PubMed  Google Scholar 

  137. Bi Y, Wei T, Wu C, Han Z, Jiang T, Caramazza A. The role of the left anterior temporal lobe in language processing revisited: evidence from an individual with ATL resection. Cortex J Devoted Study Nerv Syst Behav. 2011;47(5):575–87.

    Google Scholar 

  138. Binder JR, Gross WL, Allendorfer JB, Bonilha L, Chapin J, Edwards JC, et al. Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study. NeuroImage. 2011;54(2):1465–75.

    PubMed  Google Scholar 

  139. Barnett A, Marty-Dugas J, McAndrews MP. Advantages of sentence-level fMRI language tasks in presurgical language mapping for temporal lobe epilepsy. Epilepsy Behav. 2014;32:114–20.

    PubMed  Google Scholar 

  140. Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW. Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci. 1999;11(1):80–95.

    CAS  PubMed  Google Scholar 

  141. Wilson SM, Lam D, Babiak MC, Perry DW, Shih T, Hess CP, et al. Transient aphasias after left hemisphere resective surgery. J Neurosurg. 2015;123(3):581–93.

    PubMed  PubMed Central  Google Scholar 

  142. Cohen L, Lehéricy S, Chochon F, Lemer C, Rivaud S, Dehaene S. Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain J Neurol. 2002;125(Pt 5):1054–69.

    Google Scholar 

  143. Dehaene S, Le Clec’H G, Poline J-B, Le Bihan D, Cohen L. The visual word form area: a prelexical representation of visual words in the fusiform gyrus. Neuroreport. 2002;13(3):321–5.

    PubMed  Google Scholar 

  144. Gaillard R, Naccache L, Pinel P, Clémenceau S, Volle E, Hasboun D, et al. Direct intracranial, FMRI, and lesion evidence for the causal role of left inferotemporal cortex in reading. Neuron. 2006;50(2):191–204.

    CAS  PubMed  Google Scholar 

  145. Ischebeck A, Indefrey P, Usui N, Nose I, Hellwig F, Taira M. Reading in a regular orthography: an FMRI study investigating the role of visual familiarity. J Cogn Neurosci. 2004;16(5):727–41.

    PubMed  Google Scholar 

  146. Bruhn H, Kleinschmidt A, Boecker H, Merboldt K-D, Hänicke W, Frahm J. The effect of acetazolamide on regional cerebral blood oxygenation at rest and under stimulation as assessed by MRI. J Cereb Blood Flow Metab. 1994;14(5):742–8.

    CAS  PubMed  Google Scholar 

  147. Seifritz E, Bilecen D, Hänggi D, Haselhorst R, Radü EW, Wetzel S, et al. Effect of ethanol on BOLD response to acoustic stimulation: implications for neuropharmacological fMRI. Psychiatry Res. 2000;99(1):1–13.

    CAS  PubMed  Google Scholar 

  148. Laurienti PJ, Field AS, Burdette JH, Maldjian JA, Yen Y-F, Moody DM. Dietary caffeine consumption modulates fMRI measures. NeuroImage. 2002;17(2):751–7.

    PubMed  Google Scholar 

  149. Huettel SA, Singerman JD, McCarthy G. The effects of aging upon the hemodynamic response measured by functional MRI. NeuroImage. 2001;13(1):161–75.

    CAS  PubMed  Google Scholar 

  150. D’Esposito M, Zarahn E, Aguirre GK, Rypma B. The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. NeuroImage. 1999;10(1):6–14.

    PubMed  Google Scholar 

  151. Carusone LM, Srinivasan J, Gitelman DR, Mesulam MM, Parrish TB. Hemodynamic response changes in cerebrovascular disease: implications for functional MR imaging. AJNR Am J Neuroradiol. 2002;23(7):1222–8.

    PubMed  Google Scholar 

  152. Krings T, Reinges MHT, Willmes K, Nuerk HC, Meister IG, Gilsbach JM, et al. Factors related to the magnitude of T2∗ MR signal changes during functional imaging. Neuroradiology. 2002;44(6):459–66.

    CAS  PubMed  Google Scholar 

  153. Hou BL, Bradbury M, Peck KK, Petrovich NM, Gutin PH, Holodny AI. Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex. NeuroImage. 2006;32(2):489–97.

    PubMed  Google Scholar 

  154. Ulmer JL, Krouwer HG, Mueller WM, Ugurel MS, Kocak M, Mark LP. Pseudo-reorganization of language cortical function at fMR imaging: a consequence of tumor-induced neurovascular uncoupling. AJNR Am J Neuroradiol. 2003;24(2):213–7.

    PubMed  Google Scholar 

  155. Schreiber A, Hubbe U, Ziyeh S, Hennig J. The influence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement. AJNR Am J Neuroradiol. 2000;21(6):1055–63.

    CAS  PubMed  Google Scholar 

  156. Chen CM, Hou BL, Holodny AI. Effect of age and tumor grade on BOLD functional MR imaging in preoperative assessment of patients with glioma. Radiology. 2008;248(3):971–8.

    PubMed  Google Scholar 

  157. Zacà D, Jovicich J, Nadar SR, Voyvodic JT, Pillai JJ. Cerebrovascular reactivity mapping in patients with low grade gliomas undergoing presurgical sensorimotor mapping with BOLD fMRI. J Magn Reson Imaging. 2014;40(2):383–90.

    PubMed  Google Scholar 

  158. Li TQ, Kastrup A, Takahashi AM, Moseley ME. Functional MRI of human brain during breath holding by BOLD and FAIR techniques. NeuroImage. 1999;9(2):243–9.

    CAS  PubMed  Google Scholar 

  159. Jungreis CA, Horton JA, Hecht ST. Blood pressure changes in feeders to cerebral arteriovenous malformations during therapeutic embolization. AJNR Am J Neuroradiol. 1989;10(3):575–7.

    CAS  PubMed  Google Scholar 

  160. Lehéricy S, Biondi A, Sourour N, Vlaicu M, du Montcel ST, Cohen L, et al. Arteriovenous brain malformations: is functional MR imaging reliable for studying language reorganization in patients? Initial observations. Radiology. 2002;223(3):672–82.

    PubMed  Google Scholar 

  161. Lazar RM, Marshall RS, Pile-Spellman J, Hacein-Bey L, Young WL, Mohr JP, et al. Anterior translocation of language in patients with left cerebral arteriovenous malformation. Neurology. 1997;49(3):802–8.

    CAS  PubMed  Google Scholar 

  162. Alkadhi H, Kollias SS, Crelier GR, Golay X, Hepp-Reymond MC, Valavanis A. Plasticity of the human motor cortex in patients with arteriovenous malformations: a functional MR imaging study. AJNR Am J Neuroradiol. 2000;21(8):1423–33.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Stippich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hainc, N., Reinhardt, J., Stippich, C. (2020). Functional Magnetic Resonance Imaging. In: Mannil, M., Winklhofer, SX. (eds) Neuroimaging Techniques in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-48419-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48419-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48418-7

  • Online ISBN: 978-3-030-48419-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics