Skip to main content

Magnetic Resonance Spectroscopy

  • Chapter
  • First Online:
Neuroimaging Techniques in Clinical Practice
  • 964 Accesses

Abstract

Magnetic resonance spectroscopy (MRS) is an established, non-invasive imaging technique for quantifying regional tissue biochemistry. It forms a valuable technique for the research and clinical evaluation of various neurological diseases. This chapter introduces the modality, describes typically evaluated metabolites, outlines evidence-based clinical applications and ends with a case description.

Our aim is to provide the reader with an understanding of the current roles and limitations of spectroscopy in neuroimaging and provide a base from which to begin interpreting proton spectra. The focus is on clinical applications that have robust evidence supporting the use of spectroscopy, provided by systematic reviews and meta-analyses where available.

We have focused this chapter on proton spectroscopy (H-MRS) because it is the most widely available, validated spectroscopy technique, and does not require any additional hardware beyond what is already being used for structural MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GABA:

Gamma-aminobutyric acid

Gln:

Glutamine

Glu:

Glutamate

Lac:

Lactate

mI:

Myo-inositol

NAA:

N-acetylaspartate

PRESS:

Point-resolved spectroscopy

SNR:

Signal-to-noise ratio

STEAM:

Stimulated echo acquisition mode

tCho, Cho:

Total choline, choline

tCr, Cr:

Total creatine, creatine

TE:

Time to echo

References

  1. Roberts JD. Nuclear magnetic resonance. Applications to organic chemistry. New York: McGraw-Hill; 1959. p. 136.

    Google Scholar 

  2. Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec. 2001;265:54–84.

    CAS  PubMed  Google Scholar 

  3. Barker PB. Fundamentals of MR spectroscopy. In: Clinical MR neuroimaging: physiological and functional techniques. 2nd ed. New York: Cambridge University Press; 2011. p. 5–20.

    Google Scholar 

  4. de Graaf RA. In vivo NMR spectroscopy: principles and techniques. 2nd ed. Chichester: Wiley; 2007. https://doi.org/10.1002/9780470512968.

    Book  Google Scholar 

  5. Hashemi RH, Lisanti CJ, Bradley WG. MR spectroscopy in the Brain. In: MRI: the basics. Philadelphia: Wolters Kluwer; 2018.

    Google Scholar 

  6. Ulmer S, Backens M, Ahlhelm FJ. Basic principles and clinical applications of magnetic resonance spectroscopy in neuroradiology. J Comput Assist Tomogr. 2016;40:1–13.

    PubMed  Google Scholar 

  7. Cichocka M, Bereś A. From fetus to older age: a review of brain metabolic changes across the lifespan. Ageing Res Rev. 2018;46:60–73.

    PubMed  Google Scholar 

  8. Wang Q, Zhang H, Zhang J, Wu C, Zhu W, Li F, Chen X, Xu B. The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: a systematic review and meta-analysis. Eur Radiol. 2015;26:2670–84.

    PubMed  Google Scholar 

  9. Wang H, Tan L, Wang H-F, Liu Y, Yin R-H, Wang W-Y, Chang X-L, Jiang T, Yu J-T. Magnetic resonance spectroscopy in Alzheimer’s disease: systematic review and meta-analysis. J Alzheimers Dis. 2015;46:1049–70. https://doi.org/10.3233/JAD-143225.

    Article  CAS  PubMed  Google Scholar 

  10. Tumati S, Martens S, Aleman A. Magnetic resonance spectroscopy in mild cognitive impairment: systematic review and meta-analysis. Neurosci Biobehav Rev. 2013;37:2571–86.

    PubMed  Google Scholar 

  11. Haga KK, Khor YP, Farrall A, Wardlaw JM. A systematic review of brain metabolite changes, measured with 1H magnetic resonance spectroscopy, in healthy aging. Neurobiol Aging. 2009;30:353–63.

    CAS  PubMed  Google Scholar 

  12. Jacobs MA, Horská A, Van Zijl PCM, Barker PB. Quantitative proton MR spectroscopic imaging of normal human cerebellum and brain stem. Magn Reson Med. 2001;46:699–705.

    CAS  PubMed  Google Scholar 

  13. Ratai E-M, Gilberto González R. Clinical magnetic resonance spectroscopy of the central nervous system. Handb Clin Neurol. 2016;135:93–116.

    PubMed  Google Scholar 

  14. Chang L, Ernst T, Witt MD, Ames N, Gaiefsky M, Miller E. Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-naïve HIV patients. NeuroImage. 2002;17:1638–48.

    PubMed  Google Scholar 

  15. Ende G. Proton magnetic resonance spectroscopy: relevance of glutamate and GABA to neuropsychology. Neuropsychol Rev. 2015;25:315–25.

    PubMed  Google Scholar 

  16. Griffith HR, den Hollander JA, Okonkwo OC, O’Brien T, Watts RL, Marson DC. Brain metabolism differs in Alzheimer’s disease and Parkinson’s disease dementia. Alzheimers Dement. 2008;4:421–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rupsingh R, Borrie M, Smith M, Wells JL, Bartha R. Reduced hippocampal glutamate in Alzheimer disease. Neurobiol Aging. 2011;32:802–10.

    CAS  PubMed  Google Scholar 

  18. Opstad KS, Provencher SW, Bell BA, Griffiths JR, Howe FA. Detection of elevated glutathione in meningiomas by quantitative in vivo 1H MRS. Magn Reson Med. 2003;49:632–7.

    CAS  PubMed  Google Scholar 

  19. Farage L, Izbudak I, Nagae-Poetscher L, Bibat G, Kaufmann W, Barker P, Naidu S, Horska A. Age-dependence and clinical correlates of brain metabolism in Rett syndrome. In: Proc. 14th sci. meet. int. soc. magn. reson. med.; 2006. p. 245.

    Google Scholar 

  20. Mikkelsen M, Barker PB, Bhattacharyya PK, et al. Big GABA: edited MR spectroscopy at 24 research sites. NeuroImage. 2017;159:32–45.

    CAS  PubMed  Google Scholar 

  21. Hollingworth W, Medina LS, Lenkinski RE, Shibata DK, Bernal B, Zurakowski D, Comstock B, Jarvik JG. A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am J Neuroradiol. 2006;27:1404–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin B, Zhang P, Cheng G, Zhou W, Wang L. [Meta-analysis of prognostic tests in neonates over 35-week gestational age with hypoxic-ischemic encephalopathy]. Zhonghua Yi Xue Za Zhi. 2014;94:115–21.

    Google Scholar 

  23. Thayyil S, Chandrasekaran M, Taylor A, Bainbridge A, Cady EB, Chong WKK, Murad S, Omar RZ, Robertson NJ. Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics. 2010;125:e382–95.

    PubMed  Google Scholar 

  24. Khan O, Seraji-Bozorgzad N, Bao F, et al. The relationship between brain MR spectroscopy and disability in multiple sclerosis: 20-year data from the U.S. Glatiramer Acetate Extension Study. J Neuroimaging. 2017;27:97–106.

    PubMed  Google Scholar 

  25. Arnold DL, Narayanan S, Antel S. Neuroprotection with glatiramer acetate: evidence from the PreCISe trial. J Neurol. 2013;260:1901–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cakmakci H, Pekcevik Y, Yis U, Unalp A, Kurul S. Diagnostic value of proton MR spectroscopy and diffusion-weighted MR imaging in childhood inherited neurometabolic brain diseases and review of the literature. Eur J Radiol. 2010;74:e161–71.

    PubMed  Google Scholar 

  27. Möller HE, Kurlemann G, Pützler M, Wiedermann D, Hilbich T, Fiedler B. Magnetic resonance spectroscopy in patients with MELAS. J Neurol Sci. 2005;229–230:131–9.

    PubMed  Google Scholar 

  28. Zhang L, Li H, Hong P, Zou X. Proton magnetic resonance spectroscopy in juvenile myoclonic epilepsy: a systematic review and meta-analysis. Epilepsy Res. 2016;121:33–8.

    PubMed  Google Scholar 

  29. Caruso PA, Johnson J, Thibert R, Rapalino O, Rincon S, Ratai EM. The use of magnetic resonance spectroscopy in the evaluation of epilepsy. Neuroimaging Clin N Am. 2013;23:407–24.

    PubMed  Google Scholar 

  30. Chuang MT, Liu YS, Tsai YS, Chen YC, Wang CK. Differentiating radiation-induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy: a meta-analysis. PLoS One. 2016;11:1–13.

    Google Scholar 

  31. Ishimaru H, Morikawa M, Iwanaga S, Kaminogo M, Ochi M, Hayashi K. Differentiation between high-grade glioma and metastatic brain tumor using single-voxel proton MR spectroscopy. Eur Radiol. 2001;11:1784–91.

    CAS  PubMed  Google Scholar 

  32. Oz G, Alger JR, Barker PB, et al. Clinical proton MR spectroscopy in central nervous system disorders. Radiology. 2014;270:658–79.

    PubMed  Google Scholar 

  33. Posse S, Otazo R, Dager SR, Alger J. MR spectroscopic imaging: principles and recent advances. J Magn Reson Imaging. 2013;37:1301–25.

    PubMed  Google Scholar 

  34. Bertholdo D, Watcharakorn A, Castillo M. Brain proton magnetic resonance spectroscopy. Neuroimaging Clin N Am. 2013;23:359–80.

    PubMed  Google Scholar 

  35. Chong WK. Magnetic resonance neuroimaging. Curr Paediatr. 1995;5:208–12.

    Google Scholar 

  36. Bertholdo D, Watcharakorn A, Castillo M. Brain proton magnetic resonance spectroscopy: introduction and overview. Neuroimaging Clin N Am. 2013;23:359–80.

    PubMed  Google Scholar 

  37. Kreis R. Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed. 2004;17:361–81.

    CAS  PubMed  Google Scholar 

  38. Elster AD. In: Questions and answers in magnetic resonance imaging. St. Louis: Mosby; 1994.

    Google Scholar 

  39. Usinskiene J, Ulyte A, Bjørnerud A, et al. Optimal differentiation of high- and low-grade glioma and metastasis: a meta-analysis of perfusion, diffusion, and spectroscopy metrics. Neuroradiology. 2016;58:339–50.

    PubMed  Google Scholar 

  40. Wang W, Hu Y, Lu P, Li Y, Chen Y, Tian M, Yu L. Evaluation of the diagnostic performance of magnetic resonance spectroscopy in brain tumors: a systematic review and meta-analysis. PLoS One. 2014;9:e112577. https://doi.org/10.1371/journal.pone.0112577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fouke SJ, Benzinger T, Gibson D, Ryken TC, Kalkanis SN, Olson JJ. The role of imaging in the management of adults with diffuse low grade glioma. J Neuro-Oncol. 2015;125:457–79.

    Google Scholar 

  42. Choi C, Ganji SK, DeBerardinis RJ, et al. 2-Hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med. 2012;18:624–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Andronesi OC, Kim GS, Gerstner E, Batchelor T, Tzika AA, Fantin VR, Vander Heiden MG, Sorensen AG. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med. 2012;4:116ra4. https://doi.org/10.1126/scitranslmed.3002693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yao A, Balchandani P, Shrivastava RK. Metabolic in vivo visualization of pituitary adenomas: a systematic review of imaging modalities. World Neurosurg. 2017;104:489–98.

    PubMed  PubMed Central  Google Scholar 

  45. Ryken TC, Aygun N, Morris J, Schweizer M, Nair R, Spracklen C, Kalkanis SN, Olson JJ. The role of imaging in the management of progressive glioblastoma: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol. 2014;118:435–60.

    CAS  Google Scholar 

  46. Cordova JS, Shu HKG, Liang Z, et al. Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. Neuro-Oncology. 2016;18:1180–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang M, Sun J, Bai HX, et al. Diagnostic accuracy of SPECT, PET, and MRS for primary central nervous system lymphoma in HIV patients. Medicine (Baltimore). 2017;96:e6676.

    Google Scholar 

  48. Howe FA, Opstad KS. 1H MR spectroscopy of brain tumours and masses. NMR Biomed. 2003;16:123–31.

    CAS  PubMed  Google Scholar 

  49. Sawlani V, Taylor R, Rowley K, Redfern R, Martin J, Poptani H. Magnetic resonance spectroscopy for differentiating pseudo-progression from true progression in GBM on concurrent chemoradiotherapy. Neuroradiol J. 2012;25:575–86.

    CAS  PubMed  Google Scholar 

  50. Hattingen E, Raab P, Franz K, Lanfermann H, Setzer M, Gerlach R, Zanella FE, Pilatus U. Prognostic value of choline and creatine in WHO grade II gliomas. Neuroradiology. 2008;50:759–67.

    PubMed  Google Scholar 

  51. Chronaiou I, Stensjoen AL, Sjobakk TE, Esmaeili M, Bathen TF. Impacts of MR spectroscopic imaging on glioma patient management. Acta Oncol (Madr). 2014;53:580–9.

    CAS  Google Scholar 

  52. Arnold DL, Shoubridge EA, Villemure J-G, Feindel W. Proton and phosphorus magnetic resonance spectroscopy of human astrocytomas in vivo. Preliminary observations on tumor grading. NMR Biomed. 1990;3:184–9.

    CAS  PubMed  Google Scholar 

  53. Gill SS, Thomas DGT, Van Bruggen N, et al. Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. J Comput Assist Tomogr. 1990;14:497–504.

    CAS  PubMed  Google Scholar 

  54. Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, Knopp EA, Zagzag D. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24:1989–98.

    PubMed  PubMed Central  Google Scholar 

  55. Wang X, Hu X, Xie P, Li W, Li X, Ma L. Comparison of magnetic resonance spectroscopy and positron emission tomography in detection of tumor recurrence in posttreatment of glioma: a diagnostic meta-analysis. Asia Pac J Clin Oncol. 2015;11:97–105.

    PubMed  Google Scholar 

  56. Zhang H, Ma L, Wang Q, Zheng X, Wu C, Xu BN. Role of magnetic resonance spectroscopy for the differentiation of recurrent glioma from radiation necrosis: a systematic review and meta-analysis. Eur J Radiol. 2014;83:2181–9.

    PubMed  Google Scholar 

  57. Ratai E, Zhang Z, Snyder BS, Yeh M, Heureux DL, Downs J, Boxerman JL, Safriel Y, Sorensen G, Gilbert MR. MR spectroscopy as an early indicator of response to anti-angiogenic therapy in patients with recurrent glioblastoma: ACRIN 6677/RTOG 0625. Neuro-Oncology. 2013;15:936–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chaumeil MM, Lupo JM, Ronen SM. Magnetic resonance (MR) metabolic imaging in glioma. Brain Pathol. 2015;25:769–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown M, Baradaran H, Christos PJ, Wright D, Gupta A, Tsiouris AJ. Magnetic resonance spectroscopy abnormalities in traumatic brain injury: a meta-analysis. J Neuroradiol. 2018;45:123–9. https://doi.org/10.1016/j.neurad.2017.09.004.

    Article  PubMed  Google Scholar 

  60. Cecil KM, Kos RS. Magnetic resonance spectroscopy and metabolic imaging in white matter diseases and pediatric disorders. Top Magn Reson Imaging. 2006;17:275–93.

    PubMed  Google Scholar 

  61. Cakir B, Teksam M, Kosehan D, Akin K, Koktener A. Inborn errors of metabolism presenting in childhood. J Neuroimaging. 2011;21:e117–33. https://doi.org/10.1111/j.1552-6569.2011.00575.x.

    Article  PubMed  Google Scholar 

  62. Valanne L, Ketonen L, Majander A, Suomalainen A, Pihko H. Neuroradiologic findings in children with mitochondrial disorders. Am J Neuroradiol. 1998;19:369–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Grodd W, Krägeloh-Mann I, Klose U, Sauter R. Metabolic and destructive brain disorders in children: findings with localized proton MR spectroscopy. Radiology. 1991;181:173–81.

    CAS  PubMed  Google Scholar 

  64. Atsina K-B, Averill L, Kandula VVR. Neuroimaging of pediatric metabolic disorders with emphasis on diffusion-weighted imaging and MR spectroscopy: a pictorial essay. Curr Radiol Rep. 2017;5:60. https://doi.org/10.1007/s40134-017-0251-7.

    Article  Google Scholar 

  65. Pirzkall A, McKnight TR, Graves EE, Carol MP, Sneed PK, Wara WW, Nelson SJ, Verhey LJ, Larson DA. MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys. 2001;50:915–28.

    CAS  PubMed  Google Scholar 

  66. Alger J. Quantitative proton magnetic resonance spectroscopy and spectroscopic imaging of the brain: a didactic review. Top Magn Reson Imaging. 2011;21:115–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy McGavin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McGavin, L., Mannava, A. (2020). Magnetic Resonance Spectroscopy. In: Mannil, M., Winklhofer, SX. (eds) Neuroimaging Techniques in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-48419-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48419-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48418-7

  • Online ISBN: 978-3-030-48419-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics