Skip to main content

Phytochemicals: Current Understandings of the Modern Therapeutic Approaches for Hepatocellular Carcinoma

  • Chapter
  • First Online:
Phytochemicals Targeting Tumor Microenvironment in Gastrointestinal Cancers

Abstract

The growing occurrence of hepatocellular carcinoma (HCC) worldwide poses major concerns because of high mortality rate and poor prognosis. A lack of explicit diagnostics makes early detection of HCC implausible accentuating the demand of novel therapeutic approaches. In this chapter we discuss briefly major risk factors that contribute to the development of HCC and progress made in the identification of new molecular biomarkers and their significance in the detection of HCC. Here, our main focus is on recent advances made in the development of phytochemicals as novel prophylactics and therapeutic agents. First, we discuss a number of phytochemicals that are used to prevent or treat a variety of cancers. Subsequently, our emphasis is shifted on phytochemicals that are specifically significant in the treatment or prevention of HCC. A number of phytochemicals are emerging as plausible therapeutic agents for the treatment of HCC and are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABCG2:

Adenosine triphosphate (ATP)-binding cassette subfamily G member 2

ACVR1:

Activin A receptor type I

AFLD :

Alcoholic fatty liver disease

AFP:

Alpha fetoprotein

ALD:

Alcohol-related liver disease

ALT :

Alanine transaminase

AST:

Aspartate transaminase

Bcl-2:

B-cell lymphoma 2

BMP:

Bone morphogenetic protein

CD8+ T cell:

Cluster of differentiation 8 T cell

COX-2:

Cyclooxygenase-2

CRAE :

C. rhizome aqueous extract

CSC:

Cancer stem cell

CT:

Computed tomography

CTL-4:

Cytotoxic T-lymphocyte-associated protein 4

CXCL1:

Chemokine (C-X-C motif) ligand 1

CXCR4:

C-X-C motif chemokine receptor 4

DIHS :

Drug-induced hepatic steatosis

DLK-1:

Delta-like 1/fetal antigen-1

DNA:

Deoxyribonucleic acid

EGCG :

Epigallocatechin-3-gallate

EMT:

Epithelial-mesenchymal transition

EpCAM:

Epithelial cell adhesion molecule

GLB1:

Galactosidase beta 1

GSTM1:

Glutathione S-transferase mu 1

GSTT1 :

Glutathione S-transferase theta 1

GTP:

Guanosine-5′-triphosphate

HA:

Hyaluronic acid

HAV:

Hepatitis A virus

HBeAg:

Hepatitis B e-antigen

HBV:

Hepatitis B virus

HBx:

HBV-encoded X antigen

HCC:

Hepatocellular carcinoma

hCSC:

Human CSC

HCT-15:

Human colorectal adenocarcinoma

HCV:

Hepatitis C virus

HLA:

Human leukocyte antigen

HPC:

HCC progenitor cell

Hsp:

Heat-shock protein

IBD:

Inflammatory bowel disease

IGF :

Insulin-like growth factor 1

IKK:

IκB kinase

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

JAK2:

Janus kinase 2

JNK:

c-Jun N-terminal kinase

LGR5:

Leucine-rich repeat-containing G-protein-coupled receptor 5

MAPK:

Microtubule-associated protein kinase

MCF-7:

Michigan Cancer Foundation-7

MDM2:

Mouse double minute 2 homolog

miRNA:

microRNA

MKK7:

Mitogen-activated protein kinase kinase 7

MRA:

Magnetic resonance angiogram

MRI:

Magnetic resonance imaging

mTOR:

Mammalian target of rapamycin

NAFLD :

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

OCT4:

Octamer-binding transcription factor 4

PAE:

Prostate artery embolization

PARP:

Poly-ADP-ribose polymerase

PD-1:

Programmed cell death protein 1

PDGF-BB :

Platelet-derived growth factor subunit BB

PDL-1:

Programmed death ligand-1

PI3K:

Phosphoinositide 3-kinase

PKB:

Protein kinase B

PKC:

Protein kinase C

PPAR:

Peroxisome proliferator-activated receptor

PTEN:

Phosphatase and tensin homolog

RNA :

Ribonucleic acid

ROCK:

Rho-associated protein kinase

ROS:

Reactive oxygen species

SMAD7:

Mothers against Dpp homolog 8

SNP:

Single-nucleotide polymorphism

STAT3:

Signal transducer and activator of transcription 3

STRAP:

Serine/threonine kinase receptor-associated protein

T2DM :

Type 2 diabetes

TACE:

Transarterial chemoembolization

TAE:

Transarterial embolization

TCTP:

Translationally controlled tumor protein

TERT:

Telomerase reverse transcriptase

TGF-β1:

Transforming growth factor-beta 1

TGP :

Total glucosides of peony

TIPRL:

TOR signaling pathway regulator

TNFα:

Tumor necrosis factor alpha

TRAIL :

TNF-related apoptosis-inducing ligand

VEGF:

Vascular endothelial growth factor

XRCC3 :

X-ray repair cross complementing 3

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: a Cancer Journal for Clinicians, 69, 7–34.

    Google Scholar 

  2. Liver cancer survival rates. American Cancer Society. Accessed January 8, 2020 from https://www.cancer.org/cancer/liver-cancer/detection-diagnosis-staging/survival-rates.html.

    Google Scholar 

  3. Idilman, I. S., Ozdeniz, I., & Karcaaltincaba, M. (2016). Hepatic steatosis: Etiology, patterns, and quantification. Seminars in Ultrasound, CT, and MRI, 37(6), 501–510.

    Google Scholar 

  4. Moore, J. B. (2019). From sugar to liver fat and public health: Systems biology driven studies in understanding non-alcoholic fatty liver disease pathogenesis. The Proceedings of the Nutrition Society, 78, 290–304.

    Google Scholar 

  5. Marengo, A., Rosso, C., & Bugianesi, E. (2016). Liver cancer: Connections with obesity, fatty liver, and cirrhosis. Annual Review of Medicine, 67, 103–117.

    CAS  Google Scholar 

  6. Peng, S., Chen, Y., Gong, Y., Li, Z., Xie, R., Lin, Y., et al. (2019). Predictive value of intratumour inflammatory cytokine mRNA levels of hepatocellular carcinoma patients and activation of two distinct pathways govern IL-8 induced epithelial-mesenchymal transition in human hepatic cancer cell lines. Cytokine, 119, 81–89.

    CAS  Google Scholar 

  7. Jena, P., Sheng, L., Liu, H. X., Kalanetra, K. M., Mirsoian, A., Murphy, W., et al. (2017). Western diet-induced dysbiosis in farnesoid X receptor knockout mice causes persistent hepatic inflammation after antibiotic treatment. The American Journal of Pathology, 187(8), 1800–1813.

    CAS  Google Scholar 

  8. Mani, S. K. K., & Andrisani, O. (2018). Hepatitis B virus-associated hepatocellular carcinoma and hepatic cancer stem cells. Genes, 9(3), 137.

    Google Scholar 

  9. Sukowati, C. H. C. (2019). Heterogeneity of hepatic cancer stem cells. Advances in Experimental Medicine and Biology, 1139, 59–81.

    CAS  Google Scholar 

  10. Ringelhan, M., Mckeating, J. A., & Protzer, U. (2017). Viral hepatitis and liver cancer. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1732).

    Google Scholar 

  11. Chan, L. H., Luk, S. T., & Ma, S. (2015). Turning hepatic cancer stem cells inside out – A deeper understanding through multiple perspectives. Molecules and Cells, 38(3), 202–209.

    CAS  Google Scholar 

  12. Oh, J., Hlatky, L., Jeong, Y. S., & Kim, D. (2016). Therapeutic effectiveness of anticancer phytochemicals on cancer stem cells. Toxins, 8, 199.

    Google Scholar 

  13. Yamashita, T., & Kaneko, S. (2016). Liver cancer. Rinsho Byori, 64, 787–796.

    Google Scholar 

  14. Pocha, C., & Xie, C. (2019). Hepatocellular carcinoma in alcoholic and non-alcoholic fatty liver disease – One of a kind or two different enemies? Translational Gastroenterology and Hepatology, 4, 72–84.

    Google Scholar 

  15. Portius, D., Sobolewski, C., & Foti, M. (2017). MicroRNAs-dependent regulation of PPARs in metabolic diseases and cancers. PPAR Research.

    Google Scholar 

  16. Wu, L., Guo, C., & Wu, J. (2020). Therapeutic potential of PPARgamma natural agonists in liver diseases. Journal of Cellular and Molecular Medicine.

    Google Scholar 

  17. Hepatitis B: key facts. World Health Organization. Accessed July 18, 2019 from https://www.who.int/news-room/fact-sheets/detail/hepatitis-b.

    Google Scholar 

  18. Hoshida, Y., Nijman, S. M. B., Kobayashi, M., Chan, J. A., Brunet, J.-P., Chiang, D. Y., et al. (2009). Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Research, 69, 7385–7392.

    CAS  Google Scholar 

  19. Hepatitis C questions and answers for the public. CDC. Accessed January 13, 2020 from https://www.cdc.gov/hepatitis/hcv/cfaq.htm.

    Google Scholar 

  20. Hepatitis B questions and answers for the public. CDC. Accessed January 13, 2020 from https://www.cdc.gov/hepatitis/hbv/bfaq.htm.

    Google Scholar 

  21. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., & Bray, F. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns. GLOBOCAN. International Journal of Cancer, 136, 359–386.

    Google Scholar 

  22. El-Serag, H. B. (2012). Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 142, 1264.

    Google Scholar 

  23. Llovet, J. M., Bru, C., & Bruix, J. (1999). Prognosis of hepatocellular carcinoma: The BCLC staging classification. Seminars in Liver Disease, 19, 329–338.

    CAS  Google Scholar 

  24. Bruix, J., & Sherman, M. (2011). Management of hepatocellular carcinoma: An update. Hepatology, 53, 1020–1022.

    Google Scholar 

  25. Yatsuji, S., Hashimoto, E., & Tobari, M. (2009). Clinical features and outcomes of cirrhosis due to nonalcoholic steatohepatitis compared with cirrhosis caused by chronic hepatitis C. Journal of Gastroenterology and Hepatology, 24, 248–254.

    CAS  Google Scholar 

  26. Sanyal, A. J., Banas, C., & Sargeant, C. (2006). Similarities and differences in outcomes of cirrhosis due to nonalcoholic steatohepatitis and hepatitis C. Hepatology, 43, 682–689.

    Google Scholar 

  27. Shoelson, S. E., Herrero, L., & Naaz, A. (2007). Obesity, inflammation and insulin resistance. Gastroenterology, 132, 2169–2180.

    CAS  Google Scholar 

  28. Hirosumi, J., Tuncman, G., Chang, L., et al. (2002). A central role for JNK in obesity and insulin resistance. Nature, 420, 333–336.

    CAS  Google Scholar 

  29. Hodge, D. R., Hurt, E. M., & Farrar, W. L. (2005). The role of IL-6 and STAT3 in inflammation and cancer. European Journal of Cancer, 41, 2502–2512.

    CAS  Google Scholar 

  30. Jiang, N., Sun, R., & Sun, Q. (2014). Leptin signaling molecular actions and drug target in hepatocellular carcinoma. Drug Design, Development and Therapy, 8, 2295–2302.

    CAS  Google Scholar 

  31. Villanueva, A., Chiang, D. Y., Newell, P., et al. (2008). Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology, 135, 1972–1983.

    CAS  Google Scholar 

  32. Sharma, D., Wang, J., Fu, P. P., et al. (2010). Adiponectin antagonizes the oncogenic actions of leptin in hepatocellular carcinogenesis. Hepatology, 52, 1713–1722.

    CAS  Google Scholar 

  33. Angulo, P. (2007). Obesity and nonalcoholic fatty liver disease. Nutrition Reviews, 65, 57–63.

    Google Scholar 

  34. Teli, M. R., Day, C. P., Burt, A. D., et al. (1995). Determinants of progression to cirrhosis or fibrosis in pure alcoholic fatty liver. Lancet, 346, 987–990.

    CAS  Google Scholar 

  35. Mandayam, S., Jamal, M. M., & Morgan, T. R. (2004). Epidemiology of alcoholic liver disease. Seminars in Liver Disease, 24, 217–232.

    Google Scholar 

  36. González-Reimers, E., Quintero-Platt, G., Rodríguez-Gaspar, M., et al. (2015). Liver steatosis in hepatitis C patients. World Journal of Hepatology, 7, 1337–1346.

    Google Scholar 

  37. Amacher, D. E., & Chalasani, N. (2014). Drug-induced hepatic steatosis. Seminars in Liver Disease, 34(2), 205–214.

    CAS  Google Scholar 

  38. Martins-Filho, S. N., Paiva, C., Azevedo, R. S., & Alves, V. A. F. (2017). Histological grading of hepatocellular carcinoma-a systematic review of literature. Frontiers in Medicine, 4, 193.

    Google Scholar 

  39. DePeralta, D. K., Wei, L., Ghoshal, S., Schmidt, D., Lauwers, G., Lanuti, M., et al. (2016). Metformin prevents hepatocellular carcinoma development by suppressing hepatic progenitor cell activation in a rat model of cirrhosis. Cancer, 122(8), 1216–1227.

    CAS  Google Scholar 

  40. Li, S., Yang, F., & Ren, X. (2015). Immunotherapy for hepatocellular carcinoma. Drug Discoveries & Therapeutics, 9, 363–371.

    CAS  Google Scholar 

  41. Haraguchi, N., Ishii, H., Mimori, K., Tanaka, F., Ohkuma, M., Kim, H. M., et al. (2010). CD13 is a therapeutic target in human liver cancer stem cells. The Journal of Clinical Investigation, 120, 3326–3339.

    CAS  Google Scholar 

  42. Ma, S., Chan, K. W., Hu, L., Lee, T. K., Wo, J. Y., Ng, I. O., et al. (2007). Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology, 132, 2542–2556.

    CAS  Google Scholar 

  43. Yamashita, T., Ji, J., Budhu, A., Forgues, M., Yang, W., Wang, H. Y., et al. (2009). EpCAM positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology, 136.

    Google Scholar 

  44. Yang, Z. F., Ho, D. W., Ng, M. N., Lau, C. K., Yu, W. C., Ngai, P., et al. (2008). Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell, 13, 153–166.

    CAS  Google Scholar 

  45. Tang, K. H., Ma, S., Lee, T. K., Chan, Y. P., Kwan, P. S., Tong, C. M., et al. (2012). CD133(+) liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology, 55, 807–820.

    CAS  Google Scholar 

  46. Schrader, J., Gordon-Walker, T. T., Aucott, R. L., van Deemter, M., Quaas, A., Walsh, S., et al. (2011). Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology, 53, 1192–1205.

    CAS  Google Scholar 

  47. He, G., Dhar, D., Nakagawa, H., Font-Burgada, J., Ogata, H., Jiang, Y., et al. (2013). Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell, 155.

    Google Scholar 

  48. Fan, Q. M., Jing, Y. Y., Yu, G. F., Kou, X. R., Ye, F., Gao, L., et al. (2014). Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Letters, 352, 160–168.

    CAS  Google Scholar 

  49. Chen, H., Luo, Z., Dong, L., Tan, Y., Yang, J., Feng, G., et al. (2013). CD133/prominin-1-mediated autophagy and glucose uptake beneficial for hepatoma cell survival. PLoS One, 8.

    Google Scholar 

  50. Chen, H., Luo, Z., Sun, W., Zhang, C., Sun, H., Zhao, N., et al. (2013). Low glucose promotes CD133 mAb-elicited cell death via inhibition of autophagy in hepatocarcinoma cells. Cancer Letters, 336, 204–212.

    CAS  Google Scholar 

  51. Wang, X., Hassan, W., Zhao, J., Bakht, S., Nie, Y., Wang, Y., et al. (2019). The impact of hepatocyte nuclear factor-1alpha on liver malignancies and cell stemness with metabolic consequences. Stem Cell Research & Therapy, 10, 315.

    CAS  Google Scholar 

  52. Haznadar, M., Diehl, C. M., Parker, A. L., Krausz, K. W., Bowman, E. D., Rabibhadana, S., et al. (2019). Urinary metabolites diagnostic and prognostic of intrahepatic cholangiocarcinoma. Cancer Epidemiology, Biomarkers & Prevention, 28, 1704–1711.

    CAS  Google Scholar 

  53. Kubo, N., Araki, K., Kuwano, H., & Shirabe, K. (2016). Cancer-associated fibroblasts in hepatocellular carcinoma. World Journal of Gastroenterology, 22, 6841–6850.

    CAS  Google Scholar 

  54. Adult primary liver cancer treatment (PDQ®)–patient version. National Cancer Institute. Accessed July 2, 2019 from https://www.cancer.gov/types/liver/patient/adult-liver-treatment-pdq#_44.

    Google Scholar 

  55. McDonald, G. B., Freston, J. W., Boyer, J. L., & DeLeve, L. D. (2019). Liver complications following treatment of hematologic malignancy with anti-CD22-calicheamicin (Inotuzumab Ozogamicin). Hepatology, 69, 831–844.

    CAS  Google Scholar 

  56. Calkic, L. (2019). Phytotherapy and liver disease. Liver Cirrhosis – Debates and Challenges.

    Google Scholar 

  57. Madrigal-Santillán, E., MadrigalBujaidar, E., Álvarez-González, I., Sumaya-Martínez, M. T., GutiérrezSalinas, J., et al. (2014). Review of natural products with hepatoprotective effects. World Journal of Gastroenterology, 20(40), 14787–14804.

    Google Scholar 

  58. Pratheeshkumar, P., Son, Y. O., Korangath, P., Manu, K. A., & Siveen, K. S. (2015). Phytochemicals in cancer prevention and therapy. BioMed Research International, 2015, 324021.

    Google Scholar 

  59. Khan, T., Ali, M., Khan, A., Nisar, P., Jan, S., Afridi, S., et al. (2020). Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules, 10(1), 47.

    Google Scholar 

  60. Mohammad, A., Anuradha, M., Afreen, U., & Parwez, A. (2017). Dietary agents and phytochemicals in the prevention and treatment of hepatocellular carcinoma: Review article. Med Phoenix, 2(1), 56–62.

    Google Scholar 

  61. Azam, F., Sheikh, N., Ali, G., & Tayyeb, A. (2018). Fagonia indica repairs hepatic damage through expression regulation of toll-like receptors in a liver injury model. Journal of Immunology Research, 2018, 7967135.

    Google Scholar 

  62. Chen, X. Z., Cao, Z. Y., Chen, T. S., Zhang, Y. Q., Liu, Z. Z., Su, Y. T., et al. (2012). Water extract of Hedyotis diffusa Willd suppresses proliferation of human HepG2 cells and potentiates the anticancer efficacy of low-dose 5-fluorouracil by inhibiting the CDK2-E2F1 pathway. Oncology Reports, 28, 742–748.

    CAS  Google Scholar 

  63. Liu, J., Man, S., Li, J., Zhang, Y., Meng, X., & Gao, W. (2016). Inhibition of diethylnitrosamine-induced liver cancer in rats by Rhizoma paridis saponin. Environmental Toxicology and Pharmacology, 46, 103–109.

    CAS  Google Scholar 

  64. Chen, S. R., Dai, Y., Zhao, J., Lin, L., Wang, Y., & Wang, Y. (2018). A mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F. Frontiers in Pharmacology, 9, 104.

    Google Scholar 

  65. Wu, J. J., Sun, W. Y., Hu, S. S., Zhang, S., & Wei, W. (2013). A standardized extract from Paeonia lactiflora and Astragalus membranaceus induces apoptosis and inhibits the proliferation, migration and invasion of human hepatoma cell lines. International Journal of Oncology, 43, 1643–1651.

    Google Scholar 

  66. Yang, B., Xiao, B., & Sun, T. (2013). Antitumor and immunomodulatory activity of Astragalus membranaceus polysaccharides in H22 tumor-bearing mice. International Journal of Biological Macromolecules, 62, 287–290.

    CAS  Google Scholar 

  67. Miraj, S., & Kiani, S. (2016). Astragalus membranaceus: A review study of its anti-carcinoma activities. Der Pharmacia Lettre, 8(6), 59–65.

    CAS  Google Scholar 

  68. Zhu, M., Wang, N., Tsao, S., Yuen, M. F., Feng, Y., Wan, T., et al. (2011). Up-regulation of microRNAs, miR21 and miR23a in human liver cancer cells treated with Coptidis rhizoma aqueous extract. Experimental and Therapeutic Medicine, 2, 27–32.

    Google Scholar 

  69. Wang, N., Feng, Y., Lau, E., Tsang, C., Ching, Y., Man, K., et al. (2010). F-actin reorganization and inactivation of Rho signaling pathway involved in the inhibitory effect of Coptidis rhizoma on hepatoma cell migration. Integrative Cancer Therapies, 9(4), 354–364.

    CAS  Google Scholar 

  70. Ibrahim, S. R., & Mohamed, G. A. (2015). Litchi chinensis: Medicinal uses, phytochemistry, and pharmacology. Journal of Ethnopharmacology, 174, 492–513.

    CAS  Google Scholar 

  71. Bhoopat, L., Srichairatanakool, S., Kanjanapothi, D., Taesotikul, T., Thananchai, H., & Bhoopat, T. (2011). Hepatoprotective effects of lychee (Litchi chinensis Sonn.): A combination of antioxidant and anti-apoptotic activities. Journal of Ethnopharmacology, 136, 55–66.

    CAS  Google Scholar 

  72. Sun, W. Y., Wang, L., Liu, H., Li, X., & Wei, W. (2012). A standardized extract from Paeonia lactiflora and Astragalus membranaceus attenuates liver fibrosis induced by porcine serum in rats. International Journal of Molecular Medicine, 29, 491–498.

    Google Scholar 

  73. Lin, C. S., Kuo, C. L., Wang, J. P., Cheng, J. S., Huang, Z. W., & Chen, C. F. (2007). Growth inhibitory and apoptosis inducing effect of Perilla frutescens extract on human hepatoma HepG2 cells. Journal of Ethnopharmacology, 112, 557–567.

    Google Scholar 

  74. Wanga, Y., Huangb, X., Hanc, J., Zhenga, W., & Maa, W. (2013). Extract of Perilla frutescens inhibits tumor proliferation of HCC via PI3K/AKT signal pathway. African Journal of Traditional, Complementary and Alternative Medicines., 10.

    Google Scholar 

  75. Xu, W. W., Li, B., Lai, E. T., Chen, L., Huang, J. J., Cheung, A. L., et al. (2014). Water extract from Pleurotus pulmonarius with antioxidant activity exerts in vivo chemoprophylaxis and chemosensitization for liver cancer. Nutrition and Cancer, 66, 989–998.

    Google Scholar 

  76. Xu, W., Huang, J. J., & Cheung, P. C. (2012). Extract of Pleurotus pulmonarius suppresses liver cancer development and progression through inhibition of VEGF-induced PI3K/AKT signaling pathway. PLoS One, 7.

    Google Scholar 

  77. Jacobs, E. C. (2018). Potential therapeutic effects of phytochemicals and medicinal herbs for cancer prevention and treatment. Archives of General Internal Medicine., 02.

    Google Scholar 

  78. Nishino, H. (2009). Phytochemicals in hepatocellular cancer prevention. Nutrition and Cancer, 61, 789–791.

    Google Scholar 

  79. Ahmed-Belkacem, A., Ahnou, N., Barbotte, L., Wychowski, C., Pallier, C., Brillet, R., et al. (2010). Silibinin and related compounds are direct inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Gastroenterology, 138, 1112–1122.

    CAS  Google Scholar 

  80. Ferenci, P., Scherzer, T. M., Kerschner, H., Rutter, K., Beinhardt, S., Hofer, H., et al. (2008). Silibinin is a potent antiviral agent in patients with chronic hepatitis C not responding to pegylated interferon/ribavirin therapy. Gastroenterology, 135, 1561–1567.

    CAS  Google Scholar 

  81. Falasca, K., Ucciferri, C., Mancino, P., Vitacolonna, E., De Tullio, D., Pizzigallo, E., et al. (2008). Treatment with silybin-vitamin E-phospholipid complex in patients with hepatitis C infection. Journal of Medical Virology, 80, 1900–1906.

    CAS  Google Scholar 

  82. Gopi, S., & Setty, O. H. (2010). Protective effect of Phyllanthus fraternus against bromobenzene induced mitochondrial dysfunction in rat liver mitochondria. Food and Chemical Toxicology, 48, 2170–2175.

    CAS  Google Scholar 

  83. Chirdchupunseree, H., & Pramyothin, P. (2010). Protective activity of phyllanthin in ethanol-treated primary culture of rat hepatocytes. Journal of Ethnopharmacology, 128, 172–176.

    CAS  Google Scholar 

  84. Shen, B., Yu, J., Wang, S., Chu, E. S., Wong, V. W., Zhou, X., et al. (2008). Phyllanthus urinaria ameliorates the severity of nutritional steatohepatitis both in vitro and in vivo. Hepatology, 47, 473–483.

    Google Scholar 

  85. Koike, K. (2011). Expression of junB is markedly stimulated by glycyrrhizin in a human hepatoma cell line. Oncology Reports, 25, 609–617.

    CAS  Google Scholar 

  86. Ashfaq, U. A., Masoud, M. S., Nawaz, Z., & Riazuddin, S. (2011). Glycyrrhizin as antiviral agent against hepatitis C virus. Journal of Translational Medicine, 9, 112.

    CAS  Google Scholar 

  87. Nakamura, T., Fujii, T., & Ichihara, A. (1985). Enzyme leakage due to change of membrane permeability of primary cultured rat hepatocytes treated with various hepatotoxins and its prevention by glycyrrhizin. Cell Biology and Toxicology, 1, 285–295.

    CAS  Google Scholar 

  88. Lin, G., Nnane, I. P., & Cheng, T. V. (1999). The effects of pretreatment with glycyrrhizin and glycyrrhetinic acid on the retrorsine-induced hepatotoxicity in rats. Toxicon, 37, 1259–1270.

    CAS  Google Scholar 

  89. Gumpricht, E., Dahl, R., Devereaux, M. W., & Sokol, R. J. (2005). Licorice compounds glycyrrhizin and 18β-glycyrrhetinic acid are potent modulators of bile acid-induced cytotoxicity in rat hepatocytes. The Journal of Biological Chemistry, 280, 10556–10563.

    CAS  Google Scholar 

  90. Ogiku, M., Kono, H., Hara, M., Tsuchiya, M., & Fujii, H. (2011). Glycyrrhizin prevents liver injury by inhibition of high-mobility group box 1 production by Kupffer cells after ischemia-reperfusion in rats. The Journal of Pharmacology and Experimental Therapeutics, 339(1), 93–98.

    CAS  Google Scholar 

  91. Korenaga, M., Hidaka, I., Nishina, S., Sakai, A., Shinozaki, A., Gondo, T., et al. (2011). A glycyrrhizin-containing preparation reduces hepatic steatosis induced by hepatitis C virus protein and iron in mice. Liver International, 31, 552–560.

    CAS  Google Scholar 

  92. Saewong, T., Ounjaijean, S., Mundee, Y., Pattanapanyasat, K., Fucharoen, S., Porter, J. B., et al. (2010). Effects of green tea on iron accumulation and oxidative stress in livers of iron-challenged thalassemic mice. Medicinal Chemistry, 6, 57–64.

    CAS  Google Scholar 

  93. Kim, H. J., Yoo, H. S., Kim, J. C., Park, C. S., Choi, M. S., Kim, M., et al. (2009). Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. Journal of Ethnopharmacology, 124, 189–196.

    Google Scholar 

  94. Tuorkey, M. J. (2015). Cancer therapy with phytochemicals: Present and future perspectives. Biomedical and Environmental Sciences, 28, 808–819.

    CAS  Google Scholar 

  95. Lee, S. H., Nam, H. J., Kang, H. J., Kwon, H. W., & Lim, Y. C. (2013). Epigallocatechin-3-gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway. European Journal of Cancer, 49, 3210–3218.

    CAS  Google Scholar 

  96. Mineva, N. D., Paulson, K. E., Naber, S. P., Yee, A. S., & Sonenshein, G. E. (2013). Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells. PLoS One, 8.

    Google Scholar 

  97. Lin, C. H., Shen, Y. A., Hung, P. H., Yu, Y. B., & Chen, Y. J. (2012). Epigallocatechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines. BMC Complementary and Alternative Medicine, 12.

    Google Scholar 

  98. Clarke, N., Germain, P., Altucci, L., & Gronemeyer, H. (2004). Retinoids: Potential in cancer prevention and therapy. Expert Reviews in Molecular Medicine, 6, 1–23.

    Google Scholar 

  99. Ying, M., Wang, S., Sang, Y., Sun, P., Lal, B., Goodwin, C. R., et al. (2011). Regulation of glioblastoma stem cells by retinoic acid: Role for Notch pathway inhibition. Oncogene, 30, 3454–3467.

    CAS  Google Scholar 

  100. Palmer, H. G., Gonzalez-Sancho, J. M., Espada, J., Berciano, M. T., Puig, I., Baulida, J., et al. (2001). Vitamin D3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. The Journal of Cell Biology, 154, 369–387.

    CAS  Google Scholar 

  101. Garcia, J. J., Lopez-Pingarron, L., Almeida-Souza, P., Tres, A., Escudero, P., & Garcia-Gil, F. A. (2014). Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: A review. Journal of Pineal Research, 56, 225–237.

    CAS  Google Scholar 

  102. Kakarala, M., Brenner, D. E., Korkaya, H., Cheng, C., Tazi, K., & Ginestier, C. (2010). Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 122, 777–785.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH’s R01-DK81413 (to SAS) from the National Institute of Diabetes and Digestive and Kidney Diseases and by the UCF Reach for the Stars Award (to SAS). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Diabetes and Digestive and Kidney Diseases or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadab A. Siddiqi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cook, A., Siddiqi, S.A. (2020). Phytochemicals: Current Understandings of the Modern Therapeutic Approaches for Hepatocellular Carcinoma. In: Nagaraju, G.P. (eds) Phytochemicals Targeting Tumor Microenvironment in Gastrointestinal Cancers. Springer, Cham. https://doi.org/10.1007/978-3-030-48405-7_14

Download citation

Publish with us

Policies and ethics