Skip to main content

Case Scenario for Fluid Management After Subarachnoid Hemorrhage in the Neuro-Intensive Care Unit

  • Chapter
  • First Online:
Perioperative Fluid Management

Abstract

Subarachnoid hemorrhage is a cerebrovascular emergency with significant morbidity and mortality. The clinical presentation varies; most patients present with severe headache, nausea, vomiting and neck pain. Loss of consciousness can also happen in severe cases. Early diagnosis is essential and confirmed with a non-contrast CT of the brain with or without a lumbar puncture. The most common cause of nontraumatic subarachnoid hemorrhage is aneurysm rupture. Most patients with aneurysmal subarachnoid hemorrhage should be monitored closely in an intensive care unit after securing the aneurysm, to monitor for and prevent potential neurological and medical complications. Neurological complications include aneurysm rerupture, seizures, hydrocephalus, intracranial hypertension, and delayed cerebral ischemia, all of which can worsen outcome following subarachnoid hemorrhage. Systemic complications that can occur in these patients include acute cardiopulmonary decompensation (i.e. neurogenic pulmonary edema, estress cardiomyopathy, etc.), and hyponatremia secondary to cerebral salt wasting syndrome or syndrome of inappropriate antidiuretic hormone secretion. Close neurologic and hemodynamic monitoring and understanding of the pathophysiologic changes of this complex patient population is important to optimize patient outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lovelock CE, Rinkel GJE, Rothwell PM. Time trends in outcome of subarachnoid hemorrhage: population-based study and systematic review. Neurology. 2010;74(19):1494–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mackey J, Khoury JC, Alwell K, Moomaw CJ, Kissela BM, Flaherty ML, et al. Stable incidence but declining case-fatality rates of subarachnoid hemorrhage in a population. Neurology. 2016;87(21):2192–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nieuwkamp DJ, Setz LE, Algra A, Linn FHH, de Rooij NK, Rinkel GJE. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8:635–42.

    Article  PubMed  Google Scholar 

  4. Schievink WI, Wijdicks EF, Parisi JE, Piepgras DG, Whisnant JP. Sudden death from aneurysmal subarachnoid hemorrhage. Neurology. 1995;45:871–4.

    Article  CAS  PubMed  Google Scholar 

  5. Diringer MN, Bleck TP, Claude Hemphill J, Menon D, Shutter L, Vespa P, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the neurocritical care society’s multidisciplinary consensus conference. Neurocrit Care. 2011;15:211–40.

    Article  PubMed  Google Scholar 

  6. Gorelick PB, Hier DB, Caplan LR, Langenberg P. Headache in acute cerebrovascular disease. Neurology. 1986;36:1445–50.

    Article  CAS  PubMed  Google Scholar 

  7. Carpenter CR, Hussain AM, Ward MJ, Zipfel GJ, Fowler S, Pines JM, et al. Spontaneous subarachnoid hemorrhage: a systematic review and meta-analysis describing the diagnostic accuracy of history, physical examination, imaging, and lumbar puncture with an exploration of test thresholds. Acad Emerg Med. 2016;23:963–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sames TA, Storrow AB, Finkelstein JA, Magoon MR. Sensitivity of new-generation computed tomography in subarachnoid hemorrhage. Acad Emerg Med. 1996;3:16–20.

    Article  CAS  PubMed  Google Scholar 

  9. Byyny RL, Mower WR, Shum N, Gabayan GZ, Fang S, Baraff LJ. Sensitivity of noncontrast cranial computed tomography for the emergency department diagnosis of subarachnoid hemorrhage. Ann Emerg Med. 2008;51:697–703.

    Article  PubMed  Google Scholar 

  10. Perry JJ, Stiell IG, Sivilotti MLA, Bullard MJ, Emond M, Symington C, et al. Sensitivity of computed tomography performed within six hours of onset of headache for diagnosis of subarachnoid haemorrhage: prospective cohort study. BMJ. 2011;343:d4277.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Backes D, Rinkel GJE, Kemperman H, Linn FHH, Vergouwen MDI. Time-dependent test characteristics of head computed tomography in patients suspected of nontraumatic subarachnoid hemorrhage. Stroke. 2012;43:2115–9.

    Article  PubMed  Google Scholar 

  12. Geraghty JR, Testai FD. Delayed cerebral ischemia after subarachnoid hemorrhage: beyond vasospasm and towards a multifactorial pathophysiology. Curr Atheroscler Rep. 2017;19:50.

    Article  PubMed  CAS  Google Scholar 

  13. Mehta V, Holness RO, Connolly K, Walling S, Hall R. Acute hydrocephalus following aneurysmal subarachnoid hemorrhage. Can J Neurol Sci. 1996;23(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  14. Lin CL, Kwan AL, Howng SL. Acute hydrocephalus and chronic hydrocephalus with the need of postoperative shunting after aneurysmal subarachnoid hemorrhage. Kaohsiung J Med Sci. 1999;15(3):137–45.

    CAS  PubMed  Google Scholar 

  15. Servadei F, Murray GD, Teasdale GM, Dearden M, Iannotti F, Lapierre F, et al. Traumatic subarachnoid hemorrhage: demographic and clinical study of 750 patients from the European brain injury consortium survey of head injuries. Neurosurgery. 2002;50:261–9.

    PubMed  Google Scholar 

  16. Quigley MR, Chew BG, Swartz CE, Wilberger JE. The clinical significance of isolated traumatic subarachnoid hemorrhage. J Trauma Acute Care Surg. 2013;74:581–4.

    Article  PubMed  Google Scholar 

  17. Hop JW, Rinkel GJE, Algra A, Van Gijn J. Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke. 1997;28(3):660–4.

    Article  CAS  PubMed  Google Scholar 

  18. Fujii Y, Takeuchi S, Sasaki O, Minakawa T, Koike T, Tanaka R. Ultra-early rebleeding in spontaneous subarachnoid hemorrhage. J Neurosurg. 1996;84:35–42.

    Article  CAS  PubMed  Google Scholar 

  19. Hunt WE, Hess RM. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg. 1968;28:14–20.

    Article  CAS  PubMed  Google Scholar 

  20. Drake CG. Report of world federation of neurological surgeons committee on a universal subarachnoid hemorrhage grading scale. J Neurosurg. 1988;68:985–6.

    Google Scholar 

  21. Rosen DS, Macdonald RL. Subarachnoid hemorrhage grading scales: a systematic review. Neurocrit Care. 2005;2(2):110–8.

    Article  PubMed  Google Scholar 

  22. Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980;6(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  23. Yang TC, Chang CH, Liu YT, Chen YL, Tu PH, Chen HC. Predictors of shunt-dependent chronic hydrocephalus after aneurysmal subarachnoid haemorrhage. Eur Neurol. 2013;29(7):1288–95.

    Google Scholar 

  24. Gupta R, Ascanio LC, Enriquez-Marulanda A, Griessenauer CJ, Chinnadurai A, Jhun R, et al. Validation of a predictive scoring system for ventriculoperitoneal shunt insertion after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2018;109:e210–6.

    Article  PubMed  Google Scholar 

  25. Paisan GM, Ding D, Starke RM, Crowley RW, Liu KC. Shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage: predictors and long-term functional outcomes. Clin Neurosurg. 2018;83(3):393–402.

    Article  Google Scholar 

  26. Milhorat TH. Acute hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 1987;20:15–20.

    Article  CAS  PubMed  Google Scholar 

  27. Sakr YL, Lim N, Amaral ACKB, Ghosn I, Carvalho FB, Renard M, et al. Relation of ECG changes to neurological outcome in patients with aneurysmal subarachnoid hemorrhage. Int J Cardiol. 2004;96:369–73. A

    Article  PubMed  Google Scholar 

  28. Sachdev E, Merz CNB, Mehta PK. Takotsubo cardiomyopathy. Eur Cardiol Rev. 2015;10:25.

    Article  Google Scholar 

  29. Mayer SA, Fink ME, Homma S, Sherman D, LiMandri G, Lennihan L, et al. Cardiac injury associated with neurogenic pulmonary edema following subarachnoid hemorrhage. Neurology. 1994;44:815–20.

    Article  CAS  PubMed  Google Scholar 

  30. Bulsara KR, McGirt MJ, Liao L, Villavicencio AT, Borel C, Alexander MJ, et al. Use of the peak troponin value to differentiate myocardial infarction from reversible neurogenic left ventricular dysfunction associated with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;98:524–8.

    Article  PubMed  Google Scholar 

  31. Wijdicks EFM, Vermeulen M, Hijdra A, van Gijn J. Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysms: is fluid restriction harmful? Ann Neurol. 1985;17:137–40.

    Article  CAS  PubMed  Google Scholar 

  32. Mapa B, Taylor BES, Appelboom G, Bruce EM, Claassen J, Connolly ES. Impact of hyponatremia on morbidity, mortality, and complications after aneurysmal subarachnoid hemorrhage: a systematic review. World Neurosurg. 2016;85:305–14.

    Article  PubMed  Google Scholar 

  33. Hoffman H, Ziechmann R, Gould G, Chin LS. The impact of aneurysm location on incidence and etiology of hyponatremia following subarachnoid hemorrhage. World Neurosurg. 2018;110:e621–6.

    Article  PubMed  Google Scholar 

  34. Sterns RH, Silver SM. Cerebral salt wasting versus SIADH: what difference? J Am Soc Nephrol. 2008;19:194–6.

    Article  PubMed  Google Scholar 

  35. Yee AH, Burns JD, Wijdicks EFM. Cerebral salt wasting: pathophysiology, diagnosis, and treatment. Neurosurg Clin N Am. 2010;21:339–52.

    Article  PubMed  Google Scholar 

  36. Qureshi AI, Suri MFK, Sung GY, Straw RN, Yahia AM, Saad M, et al. Prognostic significance of hypernatremia and hyponatremia among patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2002;50:749–55.

    Article  PubMed  Google Scholar 

  37. Sayama T, Inamura T, Matsushima T, Inoha S, Inoue T, Fukui M. High incidence of hyponatremia in patients with ruptured anterior communicating artery aneurysms. Neurol Res. 2000;22:151–5.

    Article  CAS  PubMed  Google Scholar 

  38. Palmer BF. Hyponatremia in patients with central nervous system disease: SIADH versus CSW. Trends Endocrinol Metab. 2003;14:182–7.

    Article  CAS  PubMed  Google Scholar 

  39. Kirkman MA, Albert AF, Ibrahim A, Doberenz D. Hyponatremia and brain injury: historical and contemporary perspectives. Neurocrit Care. 2013;18:406–16.

    Article  PubMed  Google Scholar 

  40. Chung HM, Kluge R, Schrier RW, Anderson RJ. Clinical assessment of extracellular fluid volume in hyponatremia. Am J Med. 1987;83:905–8.

    Article  CAS  PubMed  Google Scholar 

  41. Hoff RG, van Dijk GW, Algra A, Kalkman CJ, Rinkel GJE. Fluid balance and blood volume measurement after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2008;8:391–7.

    Article  PubMed  Google Scholar 

  42. Hoff RG, Rinkel GJE, Verweij BH, Algra A, Kalkman CJ. Nurses’ prediction of volume status after aneurysmal subarachnoid haemorrhage: a prospective cohort study. Crit Care. 2008;12:R153.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sterns RH. Formulas for fixing serum sodium: curb your enthusiasm. Clin Kidney J. 2016;9:527–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness?*: a systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  45. de Oliveira OH, de FFGR, Ladeira RT, Fischer CH, Bafi AT, Azevedo LCP, et al. Comparison between respiratory changes in the inferior vena cava diameter and pulse pressure variation to predict fluid responsiveness in postoperative patients. J Crit Care. 2016;34:46–9.

    Article  PubMed  Google Scholar 

  46. Moretti R, Pizzi B. Inferior vena cava distensibility as a predictor of fluid responsiveness in patients with subarachnoid hemorrhage. Neurocrit Care. 2010;13:3–9.

    Article  PubMed  Google Scholar 

  47. Rosenwasser RH, Jallo JI, Getch CC, Liebman KE. Complications of Swan-Ganz catheterization for hemodynamic monitoring in patients with subarachnoid hemorrhage. Neurosurgery. 1995;37:872–5.

    Article  CAS  PubMed  Google Scholar 

  48. Sterns RH. Severe symptomatic hyponatremia: treatment and outcome. A study of 64 cases. Ann Intern Med. 1987;107:656–64.

    Article  CAS  PubMed  Google Scholar 

  49. Sundaram MB, Chow F. Seizures associated with spontaneous subarachnoid hemorrhage. Can J Neurol Sci. 1986;13:229–31.

    Article  CAS  PubMed  Google Scholar 

  50. Choi K-S, Chun H-J, Yi H-J, Ko Y, Kim Y-S, Kim J-M. Seizures and epilepsy following aneurysmal subarachnoid hemorrhage: incidence and risk factors. J Korean Neurosurg Soc. 2009;46:93–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Adrogué HJ. Consequences of inadequate management of hyponatremia. Am J Nephrol. 2005;25:240–9.

    Article  PubMed  Google Scholar 

  52. Woo CH, Rao VA, Sheridan W, Flint AC. Performance characteristics of a sliding-scale hypertonic saline infusion protocol for the treatment of acute neurologic hyponatremia. Neurocrit Care. 2009;11:228–34.

    Article  CAS  PubMed  Google Scholar 

  53. Ogden AT, Mayer SA, Connolly ES. Hyperosmolar agents in neurosurgical practice: the evolving role of hypertonic saline. Neurosurgery. 2005;57:207–15.

    Article  PubMed  Google Scholar 

  54. Suarez JI, Qureshi AI, Parekh PD, Razumovsky A, Tamargo RJ, Bhardwaj A, et al. Administration of hypertonic (3%) sodium chloride/acetate in hyponatremic patients with symptomatic vasospasm following subarachnoid hemorrhage. J Neurosurg Anesthesiol. 1999;11:178–84.

    Article  CAS  PubMed  Google Scholar 

  55. Al-Rawi PG, Tseng M-Y, Richards HK, Nortje J, Timofeev I, Matta BF, et al. Hypertonic saline in patients with poor-grade subarachnoid hemorrhage improves cerebral blood flow, brain tissue oxygen, and pH. Stroke. 2010;41:122–8.

    Article  CAS  PubMed  Google Scholar 

  56. Rabinstein AA, Bruder N. Management of hyponatremia and volume contraction. Neurocrit Care. 2011;15:354–60.

    Article  PubMed  Google Scholar 

  57. Mori T, Katayama Y, Kawamata T, Hirayama T. Improved efficiency of hypervolemic therapy with inhibition of natriuresis by fludrocortisone in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 1999;91:947–52.

    Article  CAS  PubMed  Google Scholar 

  58. Katayama Y, Haraoka J, Hirabayashi H, Kawamata T, Kawamoto K, Kitahara T, et al. A randomized controlled trial of hydrocortisone against hyponatremia in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007;38:2373–5.

    Article  CAS  PubMed  Google Scholar 

  59. Shah K, Turgeon RD, Gooderham PA, Ensom MHH. Prevention and treatment of hyponatremia in patients with subarachnoid hemorrhage: a systematic review. World Neurosurg. 2018;109:222–9.

    Article  PubMed  Google Scholar 

  60. Greenberg A, Verbalis JG. Vasopressin receptor antagonists. Kidney Int. 2006;69:2124–30.

    Article  CAS  PubMed  Google Scholar 

  61. Karaca Z, Hacioglu A, Kelestimur F. No Title. Pituitary. 2019;22:305–21.

    Article  CAS  PubMed  Google Scholar 

  62. Robertson GL, Aycinena P, Zerbe robert L. Neurogenic disorders of osmoregulation. Am J Med. 1982;72:339–53.

    Article  CAS  PubMed  Google Scholar 

  63. McIver B, Connacher A, Whittle I, Baylis P, Thompson C. Adipsic hypothalamic diabetes insipidus after clipping of anterior communicating artery aneurysm. BMJ. 1991;303:1465–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Crowley RK, Sherlock M, Agha A, Smith D, Thompson CJ. Clinical insights into adipsic diabetes insipidus: a large case series. Clin Endocrinol. 2007:070115055241010.

    Google Scholar 

  65. Hannon MJ, Sherlock M, Thompson CJ. Pituitary dysfunction following traumatic brain injury or subarachnoid haemorrhage – In “Endocrine Management in the Intensive Care Unit”. Best Pract Res Clin Endocrinol Metab. 2011;25:783–98.

    Article  CAS  PubMed  Google Scholar 

  66. Garrahy A, Sherlock M, Thompson CJ. Management of endocrine disease: neuroendocrine surveillance and management of neurosurgical patients. Eur J Endocrinol. 2017;176:R217–33.

    Article  CAS  PubMed  Google Scholar 

  67. Aimaretti G, Ambrosio MR, Di Somma C, Gasperi M, Cannavò S, Scaroni C, et al. Residual pituitary function after brain injury-induced hypopituitarism: a prospective 12-month study. J Clin Endocrinol Metab. 2005;90:6085–92.

    Article  CAS  PubMed  Google Scholar 

  68. Brown RJ, Epling BP, Staff I, Fortunato G, Grady JJ, McCullough LD. Polyuria and cerebral vasospasm after aneurysmal subarachnoid hemorrhage. BMC Neurol. 2015;15:201.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Baldwin ME, Macdonald RL, Huo D, Novakovia RL, Goldenberg FD, Frank JI, et al. Early vasospasm on admission angiography in patients with aneurysmal subarachnoid hemorrhage is a predictor for in-hospital complications and poor outcome. Stroke. 2004;35:2506–11.

    Article  PubMed  Google Scholar 

  70. Vergouwen MDI, Vermeulen M, van Gijn J, Rinkel GJE, Wijdicks EF, Muizelaar JP, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies. Stroke. 2010;41:2391–5.

    Article  PubMed  Google Scholar 

  71. Kassell NF, Sasaki T, Colohan AR, Nazar G. Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke. 1985;16:562–72.

    Article  CAS  PubMed  Google Scholar 

  72. Geraghty JR, Testai FD. Delayed cerebral ischemia after subarachnoid hemorrhage: beyond vasospasm and towards a multifactorial pathophysiology. Curr Atheroscler Rep. 2017;19(12):50.

    Article  PubMed  CAS  Google Scholar 

  73. Rosengart AJ, Schultheiss KE, Tolentino J, Macdonald RL. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007;38:2315–21.

    Article  PubMed  Google Scholar 

  74. Ko S-B, Choi HA, Carpenter AM, Helbok R, Schmidt JM, Badjatia N, et al. Quantitative analysis of hemorrhage volume for predicting delayed cerebral ischemia after subarachnoid hemorrhage. Stroke. 2011;42:669–74.

    Article  PubMed  Google Scholar 

  75. Lysakowski C, Walder B, Costanza MC, Tramèr MR. Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review. Stroke. 2001;32:2292–8.

    Article  CAS  PubMed  Google Scholar 

  76. Cardoso ER, Reddy K, Bose D. Effect of subarachnoid hemorrhage on intracranial pulse waves in cats. J Neurosurg. 1988;69:712–8.

    Article  CAS  PubMed  Google Scholar 

  77. Kincaid MS, Souter MJ, Treggiari MM, Yanez ND, Moore A, Lam AM. Accuracy of transcranial Doppler ultrasonography and single-photon emission computed tomography in the diagnosis of angiographically demonstrated cerebral vasospasm. J Neurosurg. 2009;110:67–72.

    Article  PubMed  Google Scholar 

  78. Suarez JI, Qureshi AI, Yahia AB, Parekh PD, Tamargo RJ, Williams MA, et al. Symptomatic vasospasm diagnosis after subarachnoid hemorrhage: evaluation of transcranial Doppler ultrasound and cerebral angiography as related to compromised vascular distribution. Crit Care Med. 2002;30:1348–55.

    Article  PubMed  Google Scholar 

  79. Albanna W, Weiss M, Müller M, Brockmann MA, Rieg A, Conzen C, et al. Endovascular rescue therapies for refractory vasospasm after subarachnoid hemorrhage: a prospective evaluation study using multimodal, continuous event neuromonitoring. Neurosurgery. 2017;80:942–9.

    Article  PubMed  Google Scholar 

  80. Chen HI, Stiefel MF, Oddo M, Milby AH, Maloney-Wilensky E, Frangos S, et al. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery. 2011;69:53–63.

    Article  PubMed  Google Scholar 

  81. Connolly ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage. Stroke. 2012;43:1711–37.

    Article  PubMed  Google Scholar 

  82. Allen GS, Ahn HS, Preziosi TJ, Battye R, Boone SC, Boone SC, et al. Cerebral arterial spasm – a controlled trial of nimodipine in patients with subarachnoid hemorrhage. N Engl J Med. 1983;308:619–24.

    Article  CAS  PubMed  Google Scholar 

  83. Egge A, Waterloo K, Sjøholm H, Solberg T, Ingebrigtsen T, Romner B. Prophylactic hyperdynamic postoperative fluid therapy after aneurysmal subarachnoid hemorrhage: a clinical, prospective, randomized, controlled study. Neurosurgery. 2001;49:593–605.

    CAS  PubMed  Google Scholar 

  84. Muench E, Horn P, Bauhuf C, Roth H, Philipps M, Hermann P, et al. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med. 2007;35:1844–51.

    Article  PubMed  Google Scholar 

  85. Raabe A, Beck J, Keller M, Vatter H, Zimmermann M, Seifert V. Relative importance of hypertension compared with hypervolemia for increasing cerebral oxygenation in patients with cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg. 2005;103:974–81.

    Article  PubMed  Google Scholar 

  86. Lennihan L, Mayer SA, Fink ME, Beckford A, Paik MC, Zhang H, et al. Effect of hypervolemic therapy on cerebral blood flow after subarachnoid hemorrhage. Stroke. 2000;31:383–91.

    Article  CAS  PubMed  Google Scholar 

  87. Jost SC, Diringer MN, Zazulia AR, Videen TO, Aiyagari V, Grubb RL, et al. Effect of normal saline bolus on cerebral blood flow in regions with low baseline flow in patients with vasospasm following subarachnoid hemorrhage. J Neurosurg. 2005;103:25–30.

    Article  PubMed  Google Scholar 

  88. Gheorghe C, Dadu R, Blot C, Barrantes F, Vazquez R, Berianu F, et al. Hyperchloremic metabolic acidosis following resuscitation of shock. Chest. 2010;138:1521–2.

    Article  PubMed  Google Scholar 

  89. Mutoh T, Kazumata K, Terasaka S, Taki Y, Suzuki A, Ishikawa T. Early intensive versus minimally invasive approach to postoperative hemodynamic management after subarachnoid hemorrhage. Stroke. 2014;45:1280–4.

    Article  PubMed  Google Scholar 

  90. Kurtz P, Helbok R, Ko S, Claassen J, Schmidt JM, Fernandez L, et al. Fluid responsiveness and brain tissue oxygen augmentation after subarachnoid hemorrhage. Neurocrit Care. 2014;20:247–54.

    Article  CAS  PubMed  Google Scholar 

  91. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7.

    Article  PubMed  Google Scholar 

  92. Marik PE, Monnet X, Teboul J-L. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care. 2011;1:1.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Suarez JI, Martin RH, Calvillo E, Bershad EM, Venkatasubba Rao CP. Effect of human albumin on TCD vasospasm, DCI, and cerebral infarction in subarachnoid hemorrhage: the ALISAH study. In: Neurovascular events after subarachnoid hemorrhage. Cham: Springer; 2015. p. 287–90.

    Chapter  Google Scholar 

  94. Kapoor A, Dhandapani S, Gaudihalli S, Dhandapani M, Singh H, Mukherjee KK. Serum albumin level in spontaneous subarachnoid haemorrhage: More than a mere nutritional marker! Br J Neurosurg. 2018;32:47–52.

    Article  PubMed  Google Scholar 

  95. Dankbaar JW, Slooter AJC, Rinkel GJE, Schaaf I. Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid haemorrhage: a systematic review. Crit Care. 2010;14:R23.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Muizelaar JP, Becker DP. Induced hypertension for the treatment of cerebral ischemia after subarachnoid hemorrhage. Direct effect on cerebral blood flow. Surg Neurol. 1986;25:317–25.

    Article  CAS  PubMed  Google Scholar 

  97. Spann RG, Lang DA, Birch AA, Lamb R, Neil-Dwyer G. Intra-aortic balloon counterpulsation: augmentation of cerebral blood flow after aneurysmal subarachnoid haemorrhage. Acta Neurochir. 2001;143:115–23.

    Article  CAS  PubMed  Google Scholar 

  98. Crespy T, Heintzelmann M, Chiron C, Vinclair M, Tahon F, Francony G, et al. Which protocol for milrinone to treat cerebral vasospasm associated with subarachnoid hemorrhage? J Neurosurg Anesthesiol. 2018;1.

    Google Scholar 

  99. Shankar JJS, dos Santos MP, Deus-Silva L, Lum C. Angiographic evaluation of the effect of intra-arterial milrinone therapy in patients with vasospasm from aneurysmal subarachnoid hemorrhage. Neuroradiology. 2011;53:123–8.

    Article  PubMed  Google Scholar 

  100. Koyanagi M, Fukuda H, Lo B, Uezato M, Kurosaki Y, Sadamasa N, et al. Effect of intrathecal milrinone injection via lumbar catheter on delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2018;128:717–22.

    Article  PubMed  Google Scholar 

  101. Wu EM, El Ahmadieh TY, Kafka B, Davies MT, Aoun SG, White JA. Milrinone-associated cardiomyopathy and arrhythmia in cerebral vasospasm. World Neurosurg. 2018;114:252–6.

    Article  PubMed  Google Scholar 

  102. Andereggen L, Beck J, Z’Graggen WJ, Schroth G, Andres RH, Murek M, et al. Feasibility and safety of repeat instant endovascular interventions in patients with refractory cerebral vasospasms. Am J Neuroradiol. 2017;38:561–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ducruet AF, Albuquerque FC, Crowley RW, Williamson R, Forseth J, McDougall CG. Balloon-pump counterpulsation for management of severe cardiac dysfunction after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2013;80:e347–52.

    Article  PubMed  Google Scholar 

  104. Labar DR, Fisch BJ, Pedley TA, Fink ME, Solomon RA. Quantitative EEG monitoring for patients with subarachnoid hemorrhage. Electroencephalogr Clin Neurophysiol. 1991;78:325–32.

    Article  CAS  PubMed  Google Scholar 

  105. Kim JA, Rosenthal ES, Biswal S, Zafar S, Shenoy AV, O’Connor KL, et al. Epileptiform abnormalities predict delayed cerebral ischemia in subarachnoid hemorrhage. Clin Neurophysiol. 2017;128:1091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Peih-Chir Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Migdady, I., Tsai, J.PC., Gomes, J.A. (2020). Case Scenario for Fluid Management After Subarachnoid Hemorrhage in the Neuro-Intensive Care Unit. In: Farag, E., Kurz, A., Troianos, C. (eds) Perioperative Fluid Management. Springer, Cham. https://doi.org/10.1007/978-3-030-48374-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48374-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48373-9

  • Online ISBN: 978-3-030-48374-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics