Skip to main content

Multicore Performance Prediction – Comparing Three Recent Approaches in a Case Study

  • Conference paper
  • First Online:
Euro-Par 2019: Parallel Processing Workshops (Euro-Par 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11997))

Included in the following conference series:

  • 1359 Accesses

Abstract

Even though parallel programs, written in high-level languages, are portable across different architectures, their parallelism does not necessarily scale after migration. Predicting a multicore-application’s performance on the target platform in an early development phase can prevent developers from unpromising optimizations and thus significantly reduce development time. However, the vast diversity and heterogeneity of system-design decisions of processor types from HPC and desktop PCs to embedded MPSoCs complicate the modeling due to varying capabilities. Concurrency effects (caching, locks, or bandwidth bottlenecks) influence parallel runtime behavior as well. Complex performance prediction approaches emerged, which can be grouped into: virtual prototyping, analytical models, and statistical methods. In this work, we predict the performance of two algorithms from the field of advanced driver-assistance systems in a case study. With the following three methods, we provide a comparative overview of state-of-the-art predictions: GEM5 (virtual prototype), IBM Exabounds (analytical model), and an in-house developed statistical method. We first describe the theoretical background, describe the experimental- and model-setup, and give a detailed evaluation of the prediction. In addition, we discuss the applicability of all three methods for predicting parallel and heterogeneous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ardalani, N., Lestourgeon, C., Sankaralingam, K., Zhu, X.: Cross-architecture performance prediction (XAPP) using CPU code to predict GPU performance. In: International Symposium on Microarchitecture. ACM (2015)

    Google Scholar 

  2. ARM: ARM Fast Models. https://developer.arm.com/tools-and-software/simulation-models/fast-models. Accessed 17 May 2019

  3. Arndt, O.J., Becker, D., Banz, C., Blume, H.: Parallel implementation of real-time semi-global matching on embedded multi-core architectures. In: International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS). IEEE (2013)

    Google Scholar 

  4. Arndt, O.J., Lefherz, T., Blume, H.: Abstracting parallel programming and its analysis towards framework independent development. In: International Symposium on Embedded Multicore/Many-Core Systems-on-Chip (MCSoC). IEEE (2015)

    Google Scholar 

  5. Arndt, O.J., Linde, T., Blume, H.: Implementation and analysis of the histograms of oriented gradients algorithm on a heterogeneous multicore CPU/GPU architecture. In: Global Conference on Signal and Information Processing (GlobalSIP). IEEE (2015)

    Google Scholar 

  6. Arndt, O.J., Lüders, M., Blume, H.: Statistical performance prediction for multicore applications based on scalability characteristics. In: International Conference on Application-specific Systems, Architectures and Processors (ASAP). IEEE (2019)

    Google Scholar 

  7. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Annual Technical Conference. USENIX Association (2005)

    Google Scholar 

  8. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, E.A.: The Gem5 simulator. ACM Comput. Archit. News 39(2), 1–7 (2011)

    Article  Google Scholar 

  9. Cadence: Cadence Virtual System Platform. https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/Archive/virtual_system_platform_ds.pdf. Accessed 17 May 2019

  10. De Pestel, S., Van den Steen, S., Akram, S., Eeckhout, L.: RPPM: rapid performance prediction of multithreaded applications on multicore hardware. IEEE Comput. Archit. Lett. 17, 183–186 (2018)

    Article  Google Scholar 

  11. Eyerman, S., Eeckhout, L., Karkhanis, T., Smith, J.E.: A mechanistic performance model for superscalar out-of-order processors. ACM Trans. Comput. Syst. 27(2), 3:1–3:37 (2009)

    Article  Google Scholar 

  12. Hoste, K., Eeckhout, L.: Microarchitecture-independent workload characterization. Micro 27, 63–72 (2007)

    Google Scholar 

  13. Imperas: Open Virtual Platforms. http://ovpworld.org/. Accessed 17 May 2019

  14. Jongerius, R., Anghel, A., Dittmann, G., Mariani, G., Vermij, E., Corporaal, H.: Analytic multi-core processor model for fast design-space exploration. IEEE Trans. Comput. 67, 755–770 (2018)

    Article  MathSciNet  Google Scholar 

  15. Jongerius, R., Mariani, G., Anghel, A., Dittmann, G., Vermij, E., Corporaal, H.: Analytic processor model for fast design-space exploration. In: International Conference on Computer Design (ICCD). IEEE (2015)

    Google Scholar 

  16. Menard, C., Castrillón, J., Jung, M., Wehn, N.: System simulation with gem5 and SystemC: the keystone for full interoperability. In: International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS). IEEE (2017)

    Google Scholar 

  17. Meng, J., Morozov, V.A., Kumaran, K., Vishwanath, V., Uram, T.D.: GROPHECY: GPU performance projection from CPU code skeletons. In: International Conference on High Performance Computing, Networking, Storage and Analysis. ACM (2011)

    Google Scholar 

  18. Power, J., Hestness, J., Orr, M.S., Hill, M.D., Wood, D.A.: gem5-gpu: a heterogeneous CPU-GPU simulator. IEEE Comput. Archit. Lett. 14(1), 34–36 (2015)

    Article  Google Scholar 

  19. Van den Steen, S., De Pestel, S., Mechri, M., Eyerman, S., Carlson, T., Black-Schaffer, D., et al.: Micro-architecture independent analytical processor performance and power modeling. In: International Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Lüders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lüders, M., Arndt, O.J., Blume, H. (2020). Multicore Performance Prediction – Comparing Three Recent Approaches in a Case Study. In: Schwardmann, U., et al. Euro-Par 2019: Parallel Processing Workshops. Euro-Par 2019. Lecture Notes in Computer Science(), vol 11997. Springer, Cham. https://doi.org/10.1007/978-3-030-48340-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48340-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48339-5

  • Online ISBN: 978-3-030-48340-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics