Skip to main content

Monitoring Onion Crops Using Multispectral Imagery from Unmanned Aerial Vehicle (UAV)

  • Conference paper
  • First Online:
New Metropolitan Perspectives (NMP 2020)

Abstract

Precision agriculture (PA) can be considered as management strategy of spatial and temporal variability in fields using information and communications technologies with the aim to optimize profitability, sustainability, and protection of agro-ecological services. In the context of PA and with reference to a specific case study on onion crop, the present paper shows the monitoring of fields, using multispectral imagery acquired by UAVs, through the use of different VIs. Multitemporal surveys were carried out using a fixed-wing UAV, equipped with a multispectral camera Sequoia Parrot (R-G-RedEdge-NIR). UAV MS imagery were calibrated using a panel with known reflectance and verified with a spectroradiometer (Apogee Ps-300) on bare soil and vegetation. The results of the analysis of the three datasets showed a high correlation of GNDVI and NDVI with SAVI. The latter was chosen to analyze the vegetative vigor by applying the VI to onion crop’s masks extracted after segmentation and classification of the three images by a geographical object-based image classification (GEOBIA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chuvieco, E.: Fundamentals of Satellite Remote Sensing, 2nd edn. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  2. Jensen, J.R.: Remote sensing of the environment: an earth resource perspective second edition, vol. 1, pp. 333–378. Pearson Education Limited, Harlow (2014)

    Google Scholar 

  3. Mulla, D.J.: Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 114(4), 358–371 (2013). http://dx.doi.org/10.1016/j.biosystemseng.2012.08.009

  4. Blackmore, S., Godwin, R.J., Fountas, S.: The analysis of spatial and temporal trends in yield map data over six years. Biosyst. Eng. 84(4), 455–466 (2003)

    Article  Google Scholar 

  5. Merenda, M., Felini, C., Della Corte, F.G.: A monolithic multisensor microchip with complete on-chip RF front-end. Sensors (Switzerland) 18(1), 110 (2018)

    Google Scholar 

  6. Merenda, M., Iero, D., Pangallo, G., Falduto, P., Adinolfi, G., Merola, A., et al.: Open-Source hardware platforms for smart converters with cloud connectivity. Electronics 8(3), 367 (2019)

    Article  Google Scholar 

  7. Solano, F., Di Fazio, S., Modica, G.: A methodology based on GEOBIA and WorldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards. Int. J. Appl. Earth Obs. Geoinf. 83, 101912 (2019). https://linkinghub.elsevier.com/retrieve/pii/S0303243418312017

  8. Khanal, S., Fulton, J., Shearer, S.: An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 139, 22–32 (2017). https://doi.org/10.1016/j.compag.2017.05.001

    Article  Google Scholar 

  9. Colomina, I., Molina, P.: Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 92, 79–97 (2014). https://doi.org/10.1016/j.isprsjprs.2014.02.013

    Article  Google Scholar 

  10. Zhang, C., Kovacs, J.M.: The application of small unmanned aerial systems for precision agriculture: a review. Precis Agric. 13(6), 693–712 (2012)

    Article  Google Scholar 

  11. Maes, W.H., Steppe, K.: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 24(2), 152–164 (2019). https://linkinghub.elsevier.com/retrieve/pii/S1360138518302693

  12. He, Y., Weng, Q.: High spatial resolution remote sensing. Data, Analysis, and Applications. Computer Applications in Sustainable Forest Management, 405 p. (2018)

    Google Scholar 

  13. Yao, H., Qin, R.: Unmanned Aerial Vehicle for Remote Sensing Applications — A Review, pp. 1–22 (2019)

    Google Scholar 

  14. Gitelson, A.A., Kaufman, Y.J., Stark, R., Rundquist, D.: Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 80(1), 76–87 (2002)

    Article  Google Scholar 

  15. Benincasa, P., Antognelli, S., Brunetti, L., Fabbri, CA., Natale, A., Sartoretti, V., et al.: Reliability of Ndvi derived by high resolution satellite and uav compared to in-field methods for the evaluation of early crop N status and grain yield in wheat. Exp. Agric. 54(4), 1–19 (2017)

    Google Scholar 

  16. Tiberini, A., Mangano, R., Micali, G., Leo, G., Manglli, A., Tomassoli, L., et al.: Onion yellow dwarf virus ∆∆Ct-based relative quantification obtained by using real-time polymerase chain reaction in ‘Rossa di Tropea’ onion. Eur. J. Plant Pathol. 153(1), 251–264 (2019)

    Article  Google Scholar 

  17. Vizzari, M., Santaga, F., Benincasa, P.: Sentinel 2-based nitrogen VRT fertilization in wheat: comparison between traditional and simple precision practices. Agronomy 9(6), 1–12 (2019)

    Article  Google Scholar 

  18. Karnieli, A., Agam, N., Pinker, R.T., Anderson, M., Imhoff, M.L., Gutman, G.G., et al.: Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 23(3), 618–633 (2010)

    Article  Google Scholar 

  19. Xue, J., Su, B.: Significant remote sensing vegetation indices: a review of developments and applications. J. Sens. 2017, 17 (2017). https://www.hindawi.com/journals/js/2017/1353691/

  20. Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N.: Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sens. Environ. 58(3), 289–298 (1996)

    Article  Google Scholar 

  21. Rouse Jr., J.W., Haas, RH., Schell, J.A., Deering, D.W.: Monitoring vegetation systems in the great plains with erts. In: NASA SP-351, 3rd ERTS-1 Symposium, pp. 309–317 (1974). https://ntrs.nasa.gov/search.jsp?R=19740022614

  22. Huete, A.R.: A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25(3), 295–309 (1988)

    Article  Google Scholar 

  23. Barnes, E.M., Clarke, T.R., Richards, S.E., Colaizzi, P.D., Haberland, J., Kostrzewski, M., et al.: Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In: Proceedings of the Fifth International Conference on Precision Agriculture (2000)

    Google Scholar 

  24. Taylor, P., Silleos, N.G.: Vegetation indices : advances made in biomass estimation and vegetation monitoring in the last 30 years vegetation indices : advances made in biomass estimation and vegetation monitoring in the Last 30 Years. Geocarto Int. (August 2011), pp. 37–41 (2006)

    Google Scholar 

  25. Modica, G., Messina, G., De Luca, G., Fiozzo, V., Praticò, S.: Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees’ crowns from UAV multispectral imagery. Comput. Electron. Agric. (2020). https://doi.org/10.1016/j.compag.2020.105500

  26. De Luca, G., Silva, N.J.M., Cerasoli, S., Araújo, J., Campos, J., Di Fazio, S., et al.: Object-based land cover classification of cork oak woodlands using UAV imagery and orfeo ToolBox. Remote Sens. 11(10), 1238 (2019). https://www.mdpi.com/2072-4292/11/10/1238

  27. Baatz, M., Schape, A.: Multiresolution segmentation - An optimization approach for high quality multi-scale image segmentation angewandte geographische informationsverarbeitung XII. In: AGIT Symposium, pp. 12–23 (2000). http://www.ecognition.com/sites/default/files/405_baatz_fp_12.pdf

  28. Messina, G., Praticò, S., Siciliani, B., Curcio, A., Di Fazio, S., Modica, G.: Monitoring onion crops using UAV multispectral and thermal imagery. In: Biosystems Engineering for Sustainable Agriculture, Forestry and food Production Matera (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Messina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Messina, G. et al. (2021). Monitoring Onion Crops Using Multispectral Imagery from Unmanned Aerial Vehicle (UAV). In: Bevilacqua, C., Calabrò, F., Della Spina, L. (eds) New Metropolitan Perspectives. NMP 2020. Smart Innovation, Systems and Technologies, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-030-48279-4_154

Download citation

Publish with us

Policies and ethics