Skip to main content

Optical Coherence Tomography as Monitoring Technology for the Additive Manufacturing of Future Biomedical Parts

  • Living reference work entry
  • First Online:
Handbook of Nondestructive Evaluation 4.0

Abstract

The production of biocompatible implants by 3D printing as well as the development of new biomaterials suitable for 3D printing processes is crucial for novel medical applications. Until now, quality monitoring of products manufactured by medical 3D printing has been based mainly on empirical data from the printing process and post-process testing. The lack of in-line quality assurance for additively manufactured parts is a critical technological barrier as it prevents the wider use of additive technologies, especially for high-value applications such as medical products. In the future, in-line quality assurance would be of particular importance for printing personalized medical devices. In this contribution, the use of optical coherence tomography (OCT) for quality sizing of 3D printing processes is presented. The development and integration of an optical measurement system for 3D printer systems, such as an extrusion-based bioprinter and a selective laser sintering-based printer, is demonstrated. This included the system design and setup of OCT measurement heads specifically for both printer types, as well as the evaluation of the recorded in-line and off-line OCT data regarding the influence of different printing parameters and materials. The newly developed system design strongly depends on the process parameters, the available space in the 3D printer, and the printing process itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Grießbach V, editor. Rapid Technologien: Verfahrens- und Werkstoffmanagement. 1st ed. Berlin: Beuth Verlag GmbH; 2016.

    Google Scholar 

  2. Cooper KG. Rapid prototyping technology: selection and application. New York: Marcel Dekker; 2001.

    Book  Google Scholar 

  3. Gibson I, Rosen D, Stucker B. Additive manufacturing technologies: 3D printing, rapid prototyping and direct digital manufacturing. New York: Springer; 2015.

    Book  Google Scholar 

  4. Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, Fischer H. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc. 2010;30:2563–7. https://doi.org/10.1016/j.jeurceramsoc.2010.04.037.

    Article  CAS  Google Scholar 

  5. Vorndran E, Moseke C, Gbureck U. 3D printing of ceramic implants. MRS Bull. 2015;40:127–36. https://doi.org/10.1557/mrs.2015.326.

    Article  CAS  Google Scholar 

  6. Popov VV, Muller-Kamskii G, Kovalevsky A, Dzhenzhera G, Strokin E, Kolomiets A, Ramon J. Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomed Eng Lett. 2018;8:337–44. https://doi.org/10.1007/s13534-018-0080-5.

    Article  Google Scholar 

  7. Liu A, Xue G, Sun M, Shao H, Ma C, Gao Q, et al. 3D printing surgical implants at the clinic: a experimental study on anterior cruciate ligament reconstruction. Sci Rep. 2016;6:21704. https://doi.org/10.1038/srep21704.

    Article  CAS  Google Scholar 

  8. Lanza RP, Langer RS, Vacanti J, Atala A, editors. Principles of tissue engineering. Amsterdam: Academic; 2020.

    Google Scholar 

  9. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85. https://doi.org/10.1038/nbt.2958.

    Article  CAS  Google Scholar 

  10. Sun W, Starly B, Daly AC, Burdick JA, Groll J, Skeldon G, et al. The bioprinting roadmap. Biofabrication. 2020;12:22002. https://doi.org/10.1088/1758-5090/ab5158.

    Article  CAS  Google Scholar 

  11. Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des. 2016;95:431–45. https://doi.org/10.1016/j.matdes.2016.01.099.

    Article  CAS  Google Scholar 

  12. Berumen S, Bechmann F, Lindner S, Kruth J-P, Craeghs T. Quality control of laser- and powder bed-based Additive Manufacturing (AM) technologies. Phys Procedia. 2010;5:617–22. https://doi.org/10.1016/j.phpro.2010.08.089.

    Article  Google Scholar 

  13. Herzog F, Bechmann F, Berumen S, Kruth J-P, Craeghs T. Method for producing a three-dimensional component. Patent WO/2012/019577, 2011.

    Google Scholar 

  14. Klein M, Sears J. Laser ultrasonic inspection of laser cladded 316LSS and TI-6-4. Int Congr Appl Lasers Electro-Optics. 2018;2004:1006. https://doi.org/10.2351/1.5060183.

    Article  Google Scholar 

  15. Edwards RS, Dutton B, Clough AR, Rosli MH. Scanning laser source and scanning laser detection techniques for different surface crack geometries. AIP Conf Proc. 2012;1430:251–8. https://doi.org/10.1063/1.4716237.

    Article  Google Scholar 

  16. Klein M, Sienicki T, Eichenbergeer J. Laser-ultrasonic detection of subsurface defects in processed metals. Patent US7278315B1, 2007.

    Google Scholar 

  17. Wasmer K, Kenel C, Leinenbach C, Shevchik SA. In situ and real-time monitoring of powder-bed AM by combining acoustic emission and artificial intelligence. In: Meboldt M, Klahn C, editors. 2018. Cham: Springer International Publishing; 2017. p. 200–9.

    Google Scholar 

  18. Meboldt M, Klahn C, editors. Industrializing additive manufacturing – proceedings of additive manufacturing in products and applications – AMPA2017. Cham: Springer International Publishing; 2017.

    Google Scholar 

  19. Jürgen Groll, Universitätsklinik Würzburg, Lehrstuhl für Funktionswerkstoffe der Medizin und der Zahnheilkunde. Kurz berichtet: Ersatzgewebe aus dem 3D-Drucker. Z Arbeitswiss. 2017;71:208–12. https://doi.org/10.1007/s41449-017-0069-4.

  20. Ersatzgewebe aus dem 3D-Drucker. 2019. https://www.uni-wuerzburg.de/en/news-and-events/news/detail/news/ersatzgewebe-aus-dem-3d-drucker/. Accessed 4 Mar 2021.

  21. Alarousu E, AlSaggaf A, Jabbour GE. Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography. Sci Rep. 2013;3:1562. https://doi.org/10.1038/srep01562.

    Article  CAS  Google Scholar 

  22. Metal Additive Manufacturing. Optical coherence tomography used in process monitoring of AM. 2016. https://www.metal-am.com/optical-coherence-tomography-used-process-monitoring-additive-manufacturing/. Accessed 4 Mar 2021.

  23. Fraunhofer Institute for Ceramic Technologies and Systems IKTS. Annual report 2015/2016 – Fraunhofer IKTS. https://www.ikts.fraunhofer.de/en/downloads/annual_reports/jb2015.html.

  24. Wolf C, Lehmann A, Kovalenko D, Moritz T, Scheithauer U, Köhler B, et al. Process monitoring in additive manufacturing. In: Fraunhofer IKTS. Fraunhofer Institute for Ceramic Technologies and Systems IKTS. Annual report 2015/2016; 2016. p. 54.

    Google Scholar 

  25. Lachmayer R, Lippert RB, Fahlbusch T, editors. 3D-Druck beleuchtet: additive manufacturing auf dem Weg in die Anwendung. Berlin/Heidelberg: Springer Vieweg; 2016.

    Google Scholar 

  26. Gebhardt A, Kessler J, Schwarz A. Produktgestaltung für die Additive Fertigung. München: Hanser; 2019.

    Book  Google Scholar 

  27. Ventola CL. Medical applications for 3D printing: current and projected uses. P T. 2014;39:704–11.

    Google Scholar 

  28. Richard HA, Schramm B, Zipsner T, editors. Additive Fertigung von Bauteilen und Strukturen. Wiesbaden: Springer Vieweg; 2017.

    Google Scholar 

  29. Adamek J, Piwek V. Additive Fertigung – 3D-Druck: Stand der Technik, Anwendungsempfehlungen und aktuelle Entwicklungen. Berlin/Münster: LIT; 2019.

    Google Scholar 

  30. Marques CF, Diogo GS, Pina S, Oliveira JM, Silva TH, Reis RL. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. J Mater Sci Mater Med. 2019;30:32. https://doi.org/10.1007/s10856-019-6234-x.

    Article  CAS  Google Scholar 

  31. Kokkinis D, Bouville F, Studart AR. 3D printing of materials with tunable failure via bioinspired mechanical gradients. Adv Mater. 2018;30:e1705808. https://doi.org/10.1002/adma.201705808.

    Article  CAS  Google Scholar 

  32. de Ruijter M, Ribeiro A, Dokter I, Castilho M, Malda J. Simultaneous micropatterning of fibrous meshes and bioinks for the fabrication of living tissue constructs. Adv Healthc Mater. 2019;8:e1800418. https://doi.org/10.1002/adhm.201800418.

    Article  CAS  Google Scholar 

  33. Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T. Tissue engineering: 3D printing of personalized thick and perfusable cardiac patches and hearts (Adv. Sci. 11/2019). Adv Sci (Weinh). 2019;6:1970066. https://doi.org/10.1002/advs.201970066.

    Article  Google Scholar 

  34. Daly AC, Pitacco P, Nulty J, Cunniffe GM, Kelly DJ. 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Biomaterials. 2018;162:34–46. https://doi.org/10.1016/j.biomaterials.2018.01.057.

    Article  CAS  Google Scholar 

  35. Mancini IAD, Vindas Bolaños RA, Brommer H, Castilho M, Ribeiro A, van Loon JPAM, et al. Fixation of hydrogel constructs for cartilage repair in the equine model: a challenging issue. Tissue Eng Part C Methods. 2017;23:804–14. https://doi.org/10.1089/ten.TEC.2017.0200.

    Article  CAS  Google Scholar 

  36. Laternser S, Keller H, Leupin O, Rausch M, Graf-Hausner U, Rimann M. A novel microplate 3D bioprinting platform for the engineering of muscle and tendon tissues. SLAS Technol. 2018;23:599–613. https://doi.org/10.1177/2472630318776594.

    Article  Google Scholar 

  37. Charbe NB, McCarron PA, Lane ME, Tambuwala MM. Application of three-dimensional printing for colon targeted drug delivery systems. Int J Pharm Investig. 2017;7:47–59.

    Article  CAS  Google Scholar 

  38. Khaled SA, Alexander MR, Wildman RD, Wallace MJ, Sharpe S, Yoo J, Roberts CJ. 3D extrusion printing of high drug loading immediate release paracetamol tablets. Int J Pharm. 2018;538:223–30. https://doi.org/10.1016/j.ijpharm.2018.01.024.

    Article  CAS  Google Scholar 

  39. Cho D-W, Kim BS, Jang J, Gao G, Han W, Singh NK. 3D bioprinting techniques. In: Cho D-W, Kim BS, Jang J, Gao G, Han W, Singh NK, editors. 3D bioprinting: modeling in vitro tissues and organs using tissue-specific bioinks. 1st ed. Cham: Springer International Publishing; Imprint: Springer; 2019. p. 25–9. https://doi.org/10.1007/978-3-030-32222-9_4.

    Chapter  Google Scholar 

  40. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321–43. https://doi.org/10.1016/j.biomaterials.2015.10.076.

    Article  CAS  Google Scholar 

  41. Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20–42. https://doi.org/10.1016/j.biomaterials.2016.06.012.

    Article  CAS  Google Scholar 

  42. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31:7250–6. https://doi.org/10.1016/j.biomaterials.2010.05.055.

    Article  CAS  Google Scholar 

  43. Rößler S, Brückner A, Kruppke I, Wiesmann H-P, Hanke T, Kruppke B. 3D plotting of silica/collagen xerogel granules in an alginate matrix for tissue-engineered bone implants. Materials (Basel). 2021. https://doi.org/10.3390/ma14040830.

  44. Porstmann V. Evaluation von 3D-Druckprozessen mittels Optischer Kohärenztomographie an Ausgewählten Biomaterialien [Diplomarbeit]: Technische Universität Dresden; 01.04.2020.

    Google Scholar 

  45. Breuninger J, Becker R, Wolf A, Rommel S, Verl A. Generative Fertigung mit Kunststoffen: Konzeption und Konstruktion für Selektives Lasersintern. Berlin/Heidelberg: Springer; 2013.

    Book  Google Scholar 

  46. Jansson A, Pejryd L. Characterisation of carbon fibre-reinforced polyamide manufactured by selective laser sintering. Addit Manuf. 2016;9:7–13. https://doi.org/10.1016/j.addma.2015.12.003.

    Article  CAS  Google Scholar 

  47. Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing SL. Review of selective laser melting: materials and applications. Appl Phys Rev. 2015;2:41101. https://doi.org/10.1063/1.4935926.

    Article  CAS  Google Scholar 

  48. Kruth J-P, Mercelis P, van Vaerenbergh J, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J. 2005;11:26–36. https://doi.org/10.1108/13552540510573365.

    Article  Google Scholar 

  49. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81. https://doi.org/10.1126/science.1957169.

    Article  CAS  Google Scholar 

  50. Lamouche G, Kennedy BF, Kennedy KM, Bisaillon C-E, Curatolo A, Campbell G, et al. Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography. Biomed Opt Express. 2012;3:1381–98. https://doi.org/10.1364/BOE.3.001381.

    Article  Google Scholar 

  51. Gora M, Karnowski K, Szkulmowski M, Kaluzny BJ, Huber R, Kowalczyk A, Wojtkowski M. Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Opt Express. 2009;17:14880–94. https://doi.org/10.1364/OE.17.014880.

    Article  CAS  Google Scholar 

  52. Cossmann M, Welzel J. Evaluation of the atrophogenic potential of different glucocorticoids using optical coherence tomography, 20-MHz ultrasound and profilometry; a double-blind, placebo-controlled trial. Br J Dermatol. 2006;155:700–6. https://doi.org/10.1111/j.1365-2133.2006.07369.x.

    Article  CAS  Google Scholar 

  53. Jang IK, Tearney G, Bouma B. Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound. Circulation. 2001;104:2754. https://doi.org/10.1161/hc4701.098069.

    Article  CAS  Google Scholar 

  54. Meissner S, Knels L, Schnabel C, Koch T, Koch E. Three-dimensional Fourier domain optical coherence tomography in vivo imaging of alveolar tissue in the intact thorax using the parietal pleura as a window. J Biomed Opt. 2010;15:16030. https://doi.org/10.1117/1.3302809.

    Article  Google Scholar 

  55. Drexler W, Fujimoto JG, editors. Optical coherence tomography: technology and applications. 2nd ed. Cham: Springer Reference; 2015.

    Google Scholar 

  56. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 2003;28:2067–9. https://doi.org/10.1364/ol.28.002067.

    Article  Google Scholar 

  57. Choudhury D, Anand S, Naing MW. The arrival of commercial bioprinters – towards 3D bioprinting revolution! Int J Bioprint. 2018;4:139. https://doi.org/10.18063/ijb.v4i2.139.

    Article  Google Scholar 

  58. REGENHU. 3D BIOPRINTING PLATFORM | Cover your entire biofabrication needs. 28.02.2021. https://www.regenhu.com/3dbioprinting-products/. Accessed 5 Mar 2021.

  59. REGENHU. Datasheet Bioprinter 3DDiscovery 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Opitz .

Editor information

Editors and Affiliations

Section Editor information

Electronic Supplementary Material

Video 1

A video illustrating the images of Fig. 9b (Strand reconstruction of strand 2). Left in the video: dispensing needle tip; right in the video: the strand dispensed from the needle tip. The substrate and the strand can be recognized. The strand and the substrate are separated by a small gap. Several inclusions (air and material variations) can be seen.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Opitz, J. et al. (2021). Optical Coherence Tomography as Monitoring Technology for the Additive Manufacturing of Future Biomedical Parts. In: Meyendorf, N., Ida, N., Singh, R., Vrana, J. (eds) Handbook of Nondestructive Evaluation 4.0. Springer, Cham. https://doi.org/10.1007/978-3-030-48200-8_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48200-8_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48200-8

  • Online ISBN: 978-3-030-48200-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics