Skip to main content

Reciprocal Learning Assistance Systems in Smart Manufacturing: Transformation from Unidirectional to Bidirectional Learning Technology in Manufacturing Enterprises

  • Chapter
  • First Online:
Online Teaching and Learning in Higher Education

Abstract

Collaboration of human and intelligent machines may establish physical or cognitive reciprocal dependencies, especially through sharing workplace and sharing knowledge. Human learning has been considered as a subject in the field of education, pedagogy, and cognitive psychology describing and modeling human learning processes. The ultimate goal is to better understand how humans acquire, store, and demonstrate knowledge, skill, ability and competence, and thus how they continuously support and improve the learning process, and pertained learning outcomes. What can we still learn from existing theories and natural phenomena to promote learning in smart factories? This book chapter provides an overview of technology-assisted learning and deepens insights into “human-machine reciprocal learning.” This novel approach is an enabler to generate and foster collective human-machine learning across a smart factory. The interlinking of digital profiles of humans and machines permits the identification and measurement of learning outcomes through sharing of workplace and performing of (shared) tasks. To achieve this goal and subsequently to transform today’s smart factory into a self-learning factory, the concept model of AUTODIDACT focusing on the envisaged use-cases at TU Wien Pilot Factory Industry 4.0 is presented. Finally, underlying objectives and research questions related to reciprocal learning and the implementation of such a reciprocal learning assistance system are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abele, E., Metternich, J., & Tisch, M. (2019). Learning factories: Concepts, guidelines, best-practice examples. Cham: Springer.

    Book  Google Scholar 

  • Ansari, F., Erol, S., & Sihn, W. (2018a). Rethinking human-machine learning in industry 4.0: How does the paradigm shift treat the role of human learning? Procedia Manufacturing, 23C, 117–122.

    Article  Google Scholar 

  • Ansari, F., Hold, P., & Sihn, W. (2018b). Human-centered cyber physical production system: How does industry 4.0. Impact on decision-making tasks? In 2018 IEEE Technology and Engineering Management Society conference, 27 June-1 July 2018, IL, USA.

    Google Scholar 

  • Ansari, F., Hold, P., Mayrhofer, W., Schlund S., & Sihn, W. (2018c). AUTODIDACT: Introducing the concept of mutual learning into a smart factory industry 4.0. In Proceedings of 15th international conference on Cognition and Exploratory Learning in Digital Age (CELDA 2018), October 21–23, Budapest, Hungary, pp.61–68.

    Google Scholar 

  • Ansari, F., Glawar, R., & Nemeth, T. (2019). PriMa: A prescriptive maintenance model for cyber-physical production systems. International Journal of Computer Integrated Manufacturing, 32(4–5), 482–503.

    Article  Google Scholar 

  • Bainbridge, L. (1983). Ironies of automation. Automatica, 19, 775–780.

    Article  Google Scholar 

  • Bauer, W., Schlund, S., Ganschar, O., & Pokorni, B. (2014). Concept of a failures management assistance system for the reaction on unforeseeable events during the ramp-up. In 8th international conference on Digital Enterprise Technology (DET 2014), March 25th – March 28th 2014, Stuttgart, Procedia CIRP 25. Amsterdam: Elsevier, pp. 420–425.

    Google Scholar 

  • Bauer, W., Bender, M., Braun, M., Rally, P., & Scholtz, O. (2016). Lightweight robots in manual assembly – Best to start simply. Examining companies’ initial experiences with lightweight robots, Stuttgart, pp. 1–32.

    Google Scholar 

  • Baxter, G., Rooksby, J., Wang, Y., & Khajeh-Hosseini, A. (2012). The ironies of automation … still going strong at 30? In P. Turner & S. Turner (Eds.), Proceedings of the 30th European conference on Cognitive Ergonomics (pp. 65–71). New York: ACM.

    Chapter  Google Scholar 

  • Boud, D., & Garrick, J. (1999). Understanding of workplace learning. In Understanding learning at work (pp. 1–12). London: Routledge.

    Google Scholar 

  • Brenner, B., & Hummel, V. (2017). Digital twin as enabler for an innovative digital shopfloor management system in the ESB logistics learning factory at Reutlingen – University. Procedia Manufacturing, 9, 198–205.

    Article  Google Scholar 

  • Brusilovsky, P., 1999. Adaptive and intelligent technologies for web-based education. In C. Rollinger &C. Peylo (Eds.), Special issue on intelligent systems and teleteaching (Künstliche Intelligenz, 4, pp. 19–25).

    Google Scholar 

  • Bubb, H. (2005). Human reliability: A key to improved quality in manufacturing. Human Factors and Ergonomics in Manufacturing, 15(4), 353–368.

    Article  Google Scholar 

  • Cedefop. (2018). Insights into skill shortages and skill mismatch: Learning from Cedefop’s European skills and jobs survey (Cedefop Reference Series, No 106). Luxembourg: Publications Office of the European Union.

    Google Scholar 

  • Duval, E. (2011). Attention please! Learning analytics for visualization and recommendation. In Proceedings of the 1st international conference on Learning Analytics and Knowledge, LAK 2011, February 27–March 01, 2011, Banff, AB, Canada.

    Google Scholar 

  • Erol, S., Jäger, A., Hold, P., Ott, K., & Sihn, W. (2016). Tangible Industry 4.0: a scenario-based approach to learning for the future of production. In Procedia CIRP 54, 6th CIRP conference on Learning Factories, Gjøvik, Norway, pp. 13–18.

    Google Scholar 

  • Ertmer, P. A., & Newby, T. J. (1993). Behaviorism, cognitivism, constructivism: Comparing critical features from an instructional design perspective. Performance Improvement Quarterly, 6(4), 50–72. (Reprinted in: 26(2), 43–71, 2013).

    Article  Google Scholar 

  • Freigang, S., Schlenker, L., & Köhler, T. (2014). A conceptual framework for designing smart learning environments. Smart Learning Environments, 5, 27. Springer (2018).

    Article  Google Scholar 

  • Ganschar, O., Gerlach, S., Hämmerle, M., Krause, T., Schlund, S., & Spath, D. (Hrsg.). (2013). Produktionsarbeit der Zukunft – Industrie 4.0. Stuttgart: Fraunhofer Verlag. ISBN:978-3-8396-0570-7, 150 S.

    Google Scholar 

  • Gasevic, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. TechTrends, 51(1), 64–71.

    Article  Google Scholar 

  • Glenn, J. C. (2013). Collective intelligence and an application by the millennium project. World Futures Review, 5(3), 235–243.

    Article  Google Scholar 

  • Goldberg, J., (2017, June 11). The robot-human alliance: Call it multiplicity: Diverse groups of people and machines working together. The Wall Street Journal.

    Google Scholar 

  • Gronau, N., & Theuer, H. (2016). Determination of the optimal degree of autonomy in a cyber-physical production system. Procedia CIRP, 57, 110–115.

    Article  Google Scholar 

  • Haase, T., (2015). Technologiebasierte Qualifizierung – Weiterbildung und Wissenstransfer der Zukunft mit neuen Methoden des Digital Engineering and Operation. In Schenk. M. (Hrsg.), Produktion und Logistik mit Zukunft, Digital Engineering and Operation (pp. 337–364). Springer.

    Google Scholar 

  • Hacker, D. J., & Tenent, A. (2002). Implementing reciprocal teaching in the classroom: Overcoming obstacles and making modifications. Journal of Education & Psychology, 94(4), 699–718.

    Article  Google Scholar 

  • Hetzner, S., Steiner, C. M., Dimitrova, V., Brna, P., & Conlan, O. (2011, September). Adult self-regulated learning through linking experience in simulated and real world: A holistic approach. In European conference on Technology Enhanced Learning 166-180). Springer, Berlin/Heidelberg.

    Google Scholar 

  • Hold, P., Ranz, F., Sihn, W., & Hummel, V. (2016). Planning operator support in cyber-physical assembly systems. IFAC PapersOnLine, 49(32), 60–65.

    Article  Google Scholar 

  • Illeris, K. (2018). An overview of the history of learning theory. European Journal of Education, 53(1), 86–101.

    Article  Google Scholar 

  • International Federation of Robotics (IFR). (2017). How robots conquer industry worldwide. In Presentation IFR Press conference, September 27, 2017.

    Google Scholar 

  • International Federation of Robotics (IFR). (2018). World robotics report 2018. IFR Press. https://ifr.org/free-downloads. Accessed on: 17.09.2019.

  • Jäger, A., Mayrhofer, W., Kuhlang, P., Matyas, K., & Sihn, W. (2012). Total immersion: Hands and heads-on training in a learning factory for comprehensive industrial engineering education. International Journal of Engineering Education, 29(1), 23–32.

    Google Scholar 

  • Janssen, J., Berlanga, A. J., Vogten, H., & Koper, R. (2018). Towards a learning path specification. International Journal of Continuing Engineering Education and Lifelong Learning, 18(1), 77–97.

    Article  Google Scholar 

  • Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0 Working Group, Ed. By Forschungsunion Wirtschaft – Wissenschaft und acatech – Deutsche Akademie der Technikwissenschaften e.V.

    Google Scholar 

  • Koper, R. (2014). Conditions for effective smart learning environments. Smart Learning Environments, 1, 5. Springer.

    Article  Google Scholar 

  • Lanza, G., Minges, S., Stoll, J., Moser, E., & Haefner, B. (2016). Integrated and modular didactic and methodological concept for a learning factory. In Procedia CIRP 54, 6th CIRP conference on Learning Factories, Gjøvik, Norway, pp. 136–140.

    Google Scholar 

  • Levy, P. (1994). L’intelligence collective. Pour une anthropologie du cyberspace. Paris: La De’couverte.

    Google Scholar 

  • Liao, Y., Deschamps, F., Rocha Loures, E. F., & Ramos, L. P. P. (2017). Past, present and future of industry 4.0 – A systematic literature review and research agenda proposal. International Journal of Production Research, 55(12), 3609–3629.

    Article  Google Scholar 

  • Mayrhofer, W., Rupprecht, P., & Schlund, S. (2019a). One-fits-all vs. tailor-made: User-centered workstations for field assembly with an application in aircraft parts manufacturing (forthcoming). In Proceedings of the 25th ICPR – Manufacturing Innovation: Cyber Physical Manufacturing, August 9–14, 2019, Chicago, IL.

    Google Scholar 

  • Mayrhofer, W., Ansari, F., Sihn, W., & Schlund, S. (2019b). Konzept für ein Assistenzsystem für arbeitsplatznahes, reziprokes Lernen in hochautomatisierten Produktionsumgebungen, GfA Frühjahrskongress 2019, Arbeit interdisziplinär analysieren – bewerten – gestalten, Dresden, February 27–March 1, 2019.

    Google Scholar 

  • Mayrhofer, W., Kames, D., & Schlund, S.. (2019c). Made in Austria: Produktionsarbeit in Österreich 2019, Studie, Technische Universität Wien. ISBN:978-3-9504856-0-8.

    Google Scholar 

  • Michalos, G., Spiliotopoulos, J., Makris, S., & Chryssolouris, G. (2018). A method for planning human robot shared tasks. CIRP Journal of Manufacturing Science and Technology, 22, 76.

    Article  Google Scholar 

  • Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W., & Ueda, K. (2016). Cyber-physical systems in manufacturing. CIRP Annals – Manufacturing Technology, 65(2), 621–641.

    Article  Google Scholar 

  • Mussomeli, A., Cotteleer, M., & Parrott, A.. (2017). Industry 4.0 and the digital twin – Manufacturing meets its match. Deloitte University Press.

    Google Scholar 

  • Nuri, K., & Nese, S. (2013). Adaptive learning systems: Beyond teaching machines. Contemporary Educational Technology, 4(2), 108–120.

    Google Scholar 

  • PFI40. (2018). Website of TU Wien Pilot Factory Industrie 4.0. Retrieved from: http://pilotfabrik.tuwien.ac.at. Accessed on 17.09.2019.

  • Schlick, C. M., Bruder, R., & Luczak, H. (2010). Arbeitswissenschaft. Berlin/Heidelberg: Springer.

    Book  Google Scholar 

  • Schlund, S., & Pokorni, B. (2016). Industrie 4.0 – Wo steht die Revolution der Arbeitsgestaltung? Stuttgart/Ulm: Ingenics AG, p. 35.

    Google Scholar 

  • Schlund, S., Mayrhofer, W., & Rupprecht, P. (2018). Möglichkeiten der Gestaltung individualisierbarer Montagearbeitsplätze vor dem Hintergrund aktueller technologischer Entwicklungen. Zeitschrift für Arbeitswissenschaft, 72, 276–286.

    Article  Google Scholar 

  • Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 57(10), 1380–1400.

    Article  Google Scholar 

  • Spath, D., Ganschar, O., Gerlach, S., Hämmerle, M., Krause, T., & Schlund, S. (Eds.). (2013). Produktionsarbeit der Zukunft – Industrie 4.0. Stuttgart: Fraunhofer-Verlag.

    Google Scholar 

  • Stoyanov, S., & Kirschner, P. (2004). Expert concept mapping method for defining the characteristics of adaptive E-learning: ALFANET project case. Educational Technology, Research & Developement, 52(2), 41–56.

    Article  Google Scholar 

  • Trivers, R. L. (1971). The evolution of reciprocal altruism. The Quarterly Review of Biology, 46(1), 35–57.

    Article  Google Scholar 

  • Uhlemann, T. H.-J., Lehmann, C., & Steinhilper, R. (2017). The digital twin: Realizing the cyber-physical production system for industry 4.0. Procedia CIRP, 61, 335–340.

    Article  Google Scholar 

  • Wagner, T., Herrmann, C., & Thiede, S. (2017). Industry 4.0 impacts on lean production systems. In Procedia CIRP 63, 50th CIRP conference on, Taichung City, Taiwan, pp. 125–131.

    Google Scholar 

  • Zangwill, W. I., & Kantor, P. B. (1998). Toward a theory of continuous improvement and the learning curve. Management Science, 44(7), 910–920.

    Article  Google Scholar 

  • Zühlke, D. (2008). SmartFactory – A Vision becomes Reality. In: Proceedings of the 17th World Congress IFAC’08, pp. 14101–14108.

    Google Scholar 

Download references

Acknowledgment

The authors would like to express their sincere gratitude to the Austrian Research Promotion Agency (FFG) and several private industrial firms that co-finance the TU Wien Pilot Factory Industry 4.0.

Furthermore, it is also noted that some of the activities covered in this chapter were financed through the bmvit-endowed chair for Industry 4.0 at TU Wien.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazel Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ansari, F., Mayrhofer, W. (2020). Reciprocal Learning Assistance Systems in Smart Manufacturing: Transformation from Unidirectional to Bidirectional Learning Technology in Manufacturing Enterprises. In: Isaias, P., Sampson, D.G., Ifenthaler, D. (eds) Online Teaching and Learning in Higher Education. Cognition and Exploratory Learning in the Digital Age. Springer, Cham. https://doi.org/10.1007/978-3-030-48190-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48190-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48189-6

  • Online ISBN: 978-3-030-48190-2

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics