Skip to main content

Balance Layout Problem with the Optimized Distances Between Objects

  • Conference paper
  • First Online:
Data Analysis and Optimization for Engineering and Computing Problems

Abstract

The optimal layout problem for objects in a convex bounded domain is considered subject to constraints on the position of the gravity center and the moments of inertia of the system. The layout is aimed to optimize mutual distances between the objects and the distances between each object and the boundary of the domain. A mathematical model is presented in the form of a nonlinear programming problem using the phi-function technique. A solution strategy is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Fadel, M. Wiecek, Packing optimization of free-form objects in engineering design, in Optimized Packings with Applications, Springer Optimization and Its Applications, ed. by G. Fasano, J. Pintér, vol. 105, (2015), pp. 37–66

    Chapter  Google Scholar 

  2. J. Liu, L. Hao, S. Li, Y. Xue, Z. Liu, J. Huang, Multi-objective layout optimization of a satellite module using the Wang-Landau sampling method with local search. Front. Inform. Technol. Electron. Eng. 6, 527–542 (2016)

    Article  Google Scholar 

  3. L.J.P. Araújo, E. Özcan, J.A.D. Atkin, M. Baumers, Analysis of irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset. Int. J. Prod. Res. 57(18), 5920–5934 (2018)

    Article  Google Scholar 

  4. J. Gardan, Additive manufacturing technologies: state of the art and trends. Int. J. Prod. Res. 54(10), 3118–3132 (2016)

    Article  Google Scholar 

  5. A. Bortfeldt, G. Wäscher, Constraints in container loading: a state-of-the-art review. Eur. J. Oper. Res. 229(1), 1–20 (2013)

    Article  MathSciNet  Google Scholar 

  6. Y. Stoyan, T. Romanova, Mathematical models of placement optimization: two- and three-dimensional problems and applications, in Modeling and Optimization in Space Engineering, Springer Optimization and Its Applications, ed. by G. Fasano, J. Pintér, vol. 73, (2013), pp. 363–388

    Chapter  Google Scholar 

  7. Y. Stoyan, A. Pankratov, T. Romanova, A. Chugay, Optimized object packings using quasi-phi-functions, in Optimized Packings and Their Applications, Springer Optimization and Its Applications, ed. by G. Fasano, J. Pintér, vol. 105, (Springer, New York, 2015), pp. 265–291

    Chapter  Google Scholar 

  8. G. Fasano, Global optimisation point of view for non-standard packing problems. J. Glob. Optim. 55(2), 279–299 (2013)

    Article  Google Scholar 

  9. S.X. Li, J. Zhao, P. Lu, Y. Xie, Maximum packing densities of basic 3D objects. Chinese Sci. Bull. 55(2), 114–119 (2010)

    Article  Google Scholar 

  10. X. Liu, J. Liu, A. Cao, Z. Yao, HAPE3D – a new constructive algorithm for the 3D irregular packing problem. Front. Inform. Technol. Electron. Eng. 16(5), 380–390 (2015)

    Article  Google Scholar 

  11. M. Verkhoturov, A. Petunin, G. Verkhoturova, K. Danilov, D. Kurennov, The 3D object packing problem into a parallelepiped container based on discrete-logical representation. IFAC-PapersOnLine 49(12), 1–5 (2016)

    Article  MathSciNet  Google Scholar 

  12. T. Romanova, J. Bennell, Y. Stoyan, A. Pankratov, Packing of concave polyhedra with continuous rotations using nonlinear optimization. Eur. J. Oper. Res. 268, 37–53 (2018)

    Article  Google Scholar 

  13. D.H. Zhang, Y. Zhang, B.H. Wu, Research on the adaptive machining technology of blisk. Adv. Mater. Res. 69-70, 446–450 (2009)

    Article  Google Scholar 

  14. M. Rakita, M. Wang, Q. Han, Y. Liu, F. Yin, Ultrasonic shot peening. Int. J. Comput. Mater. Sci. Surf. Eng. 5(3), 189–209 (2013)

    Google Scholar 

  15. S. Plankovskyy, A. Teodorczyk, O. Shypul, O. Tryfonov, D. Brega, Determination of detonable gas mixture heat fluxes at thermal deburring. Acta Politech. 59(2), 162–169 (2019)

    Article  Google Scholar 

  16. Y. Stoyan, A. Pankratov, T. Romanova, Quasi-phi-functions and optimal packing of ellipses. J. Glob. Optim. 65(2), 283–307 (2016)

    Article  MathSciNet  Google Scholar 

  17. A.A. Kovalenko, T.E. Romanova, P.I. Stetsyuk, Balance layout problem for 3D-objects: mathematical model and solution methods. Cybern. Syst. Anal. 51, 556–565 (2015)

    Article  MathSciNet  Google Scholar 

  18. P. Stetsyuk, T. Romanova, G. Scheithauer, On the global minimum in a balanced circular packing problem. Optim. Lett. 10, 347–1360 (2016)

    Article  MathSciNet  Google Scholar 

  19. Y. Stoyan, A. Pankratov, T. Romanova, G. Fasano, J. Pintér, Y. Stoian, A. Chugay, Optimized packings in space engineering applications: part I, in Modeling and Optimization in Space Engineering State of the Art and New Challenges, ed. by G. Fasano, J. D. Pinter, (Springer, New York, 2019), pp. 395–437

    Chapter  Google Scholar 

  20. R. Torres-Escobar, J.A. Marmolejo-Saucedo, I. Litvinchev, Binary monkey algorithm for approximate packing non-congruent circles in a rectangular container. Wirel. Netw. (2018). https://doi.org/10.1007/s11276-018-1869-y

  21. I. Litvinchev, L. Infante, L. Ozuna, Approximate circle packing in a rectangular container: integer programming formulations and valid inequalities, in Lecture Notes in Computer Science, 8760/2014, (2014), pp. 47–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plankovskyy, S., Nikolaev, A., Shypul, O., Litvinchev, I., Pankratov, A., Romanova, T. (2020). Balance Layout Problem with the Optimized Distances Between Objects. In: Vasant, P., Litvinchev, I., Marmolejo-Saucedo, J.A., Rodriguez-Aguilar, R., Martinez-Rios, F. (eds) Data Analysis and Optimization for Engineering and Computing Problems. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-48149-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48149-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48148-3

  • Online ISBN: 978-3-030-48149-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics