Skip to main content

The Impact of Transmission Development on a 100% Renewable Electricity Supply—A Spatial Case Study on the German Power System

  • Chapter
  • First Online:
Transmission Network Investment in Liberalized Power Markets

Part of the book series: Lecture Notes in Energy ((LNEN,volume 79))

Abstract

In this paper, we analyze the interdependence between the structure of transmission infrastructure and the electricity mix, applied to the case of Germany today and into the future. In particular, we are interested in how an energy system based on a high share of distributed renewable sources operates under different transmission regimes, for example, copper plate or more constrained network topologies. We develop a stylized model of optimal generation and storage investment and operation, under different transmission expansion scenarios (current state, 2035 with and without HVDC lines, and copper plate). We take real data of the German electricity system, characterized by a particularly high share of distributed renewables, and select an extreme value for the future, that is, 100% renewable. Results suggest that the system can accommodate the high share of renewables, by installing a large amount of short-term and long-term storage capacities. Renewable electricity capacity investment is inversely related to the state of transmission expansion, and so is storage investment. The high level of granularity of the model also allows for a spatial allocation of renewable capacities, where wind is placed mainly in the north and solar PV rather in the south. The few cases of transmission congestion suggest that by expanding the grid modestly, a high share of renewable can be accommodated. The paper ends with a discussion of model constraints and further research ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Naturschutzbund Deutschland e. V. (2019): “Stellungnahme zum NEP Strom 2030”

  2. 2.

    In this analysis, we refer to scenario B 2035 of the NDP.

  3. 3.

    Demand-side management, another important flexibility option, is not covered in this chapter.

Abbreviations

\(\text {AC}\) :

Alternating current

\(\text {DC}\) :

Direct current

\(\text {FLH}\) :

Full load hour

\(\text {HVDC}\) :

High-voltage direct-current

\(\text {lib}\) :

Lithium-ion battery

\(\text {lib}\) :

Lithium-ion batteries

\(\text {NDP}\) :

Network development plan

\(\text {NGO}\) :

Non-governmental organization

\(\text {NUTS2}\) :

Nomenclature of Territorial Units for Statistics, Level 2

\(\text {p2g}\) :

Power-to-gas

\(\text {phes}\) :

Pumped hydroelectric energy storage

\(\text {pv-open}\) :

Open-space photovoltaics

\(\text {pv-roof}\) :

Rooftop photovoltaics

\(\text {PV}\) :

Photovoltaic

\(\text {RES}\) :

Renewable energy sources

\(\text {rfb}\) :

Redox flow battery

\(\text {rfb}\) :

Redox flow batteries

\(\text {ror}\) :

Run-of-river

\(\text {TSO}\) :

Transmission system operator

\(\text {TYNDP}\) :

Ten-Year Network Development Plan

\(\text {wind-off}\) :

Offshore wind

\(\text {wind-on}\) :

Onshore wind

References

  • 50Hertz Transmission, Amprion, TenneT, and TransnetBW, Szenariorahmen für den Netzentwicklungsplan Strom 2030. VERSION 2019, Entwurf der Über- tragungsnetzbetreiber (2018)

    Google Scholar 

  • J. Abrell, S. Rausch, Cross-country electricity trade, renewable energy and European transmission infrastructure policy. J. Environ. Econ. Manag. 79, 87–113 (2016)

    Article  Google Scholar 

  • B.M.-A. Carlo, Electricity without borders - the need for cross-border transmission investment in Europe. Proefschrift / Dissertation, Technische Universiteit Delft, (2013)

    Google Scholar 

  • M. Drechsler, J. Egerer, M. Lange, F. Masurowski, J. Meyerhoff, M. Oehlmann, Efficient and equitable spatial allocation of renewable power plants at the country scale. Nature Energy 2(9), 17124 (2017)

    Article  Google Scholar 

  • J. Egerer, Open Source Electricity Model for Germany (ELMOD-DE). DIW Data Documentation 83. Berlin: DIW Berlin - Deutsches Institut für Wirtschaftsforschung e. V. (2016)

    Google Scholar 

  • European Environment Agency, CORINE Land Cover - Copernicus Land Monitoring Service (2019)

    Google Scholar 

  • M. Fürsch, S. Hagspiel, C. Jägemann, S. Nagl, D. Lindenberger, E. Tröster, The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050. Appl. Energy 104, 642–652 (2013)

    Article  Google Scholar 

  • C. Gerbaulet, C. Lorenz, dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market. DIW Data Documentation 88. Berlin: DIW Berlin - Deutsches Institut für Wirtschafts- forschung e. V. The Impact of Transmission Development on a 100 (2017)

    Google Scholar 

  • C. Gerbaulet, The role of electricity transmission infrastructure, in Energiewende “Made in Germany”: Low Carbon Electricity Sector Reform in the European Context, ed. by C. von Hirschhausen, C. Gerbaulet, C. Kemfert, C. Lorenz, P.-Y. Oei (Springer International Publishing, Cham, 2018), pp. 193–216

    Chapter  Google Scholar 

  • C. Gerbaulet, A. Weber, When regulators do not agree: are merchant interconnectors an option? Insights from an analysis of options for network expansion in the Baltic Sea region. Energy Policy 117, 228–246 (2018)

    Article  Google Scholar 

  • L. Göke, M. Kittel, C. Kemfert, P.-Y. Oei, C. von Hirschhausen, Scenarios for the Coal Phase-out in Germany - A Model- Based Analysis and Implications for Supply Security. DIW Wochenbericht 28. Berlin: DIW Berlin - Deutsches Institut für Wirtschaftsforschung e. V (2018)

    Google Scholar 

  • C.M. Grams, R. Beerli, S. Pfenninger, I. Staffell, H. Wernli, Balancing Europe’s wind-power output through spatial deployment in- formed by weather regimes. Nat. Clim. Change 7(8), 557 (2017)

    Article  Google Scholar 

  • V. Grimm, A. Martin, M. Schmidt, M. Weibelzahl, G. Zöttl, Transmission and generation investment in electricity markets: the effects of market splitting and network fee regimes. Euro. J. Oper. Res. 254(2), 493–509 (2016)

    Article  Google Scholar 

  • V. Grimm, B. Rückel, C. Sölch, G. Zöttl, Reduction of network expansion through redispatch and efficient feed-in management: A model-based assessment. List Forum für Wirtschafts- und Finanzpolitik 1–34 (2016)

    Google Scholar 

  • Hertz Transmission, TenneT Amprion, TransnetBW,. Netzentwicklungsplan Strom 2030 (2019). VERSION 2019, 2. E. Abdmouleha, A.G. Zeineb, L. Ben-Brahima, M. Haouarib, N.A. Al-Emadia, Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renew. Energy 113, 266–280 (2017)

    Google Scholar 

  • C. Hirschhausen, German energy and climate policies: a historical overview, in Energiewende “Made in Germany”: Low Carbon Electricity Sector Reform in the European Context, ed. by C. von Hirschhausen, C. Gerbaulet, C. Kemfert, C. Lorenz, P.Y. Oei (Springer International Publishing, Cham, 2018), pp. 17–44

    Google Scholar 

  • W. Hogan, J. Rosellón, I. Vogelsang, Toward a combined merchant-regulatory mechanism for electricity transmission expansion. J. Regul. Econ. 38(2), 113–143 (2010)

    Article  Google Scholar 

  • P. Joskow, J. Tirole, Merchant transmission investment. J. Ind. Econ. 2, 233–264 (2005)

    Article  Google Scholar 

  • P. Joskow, J. Tirole, Retail electricity competition. RAND J. Econ. 37(4), 799–815 (2006)

    Article  Google Scholar 

  • P. Kayal, C.K. Chanda, Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network. Renew. Energy 75, 173–186 (2015)

    Article  Google Scholar 

  • C. Kemfert, F. Kunz, J. Rosellón, A welfare analysis of electricity transmission planning in Germany. Energy Policy 94, 446–452 (2016)

    Article  Google Scholar 

  • F. Kunz, C. Gerbaulet, C. von Hirschhausen, Mittel- fristige Strombedarfsdeckung durch Kraftwerke und Netze nicht gefährdet. DIW Wochenbericht 48. Berlin: DIW Berlin - Deutsches Institut für Wirtschafts- forschung e. V (2013)

    Google Scholar 

  • F. Kunz, M. Kendziorski, W.-P. Schill, J. Weibezahn, J. Zepter, C. von Hirschhausen, P. Hauser, M. Zech, D. Möst, S. Heidari, J. Felten, C. Weber, Electricity, Heat and Gas Sector Data for Modelling the German System. DIW Data Documentation 92. Berlin: DIW Berlin - Deutsches Institut für Wirtschaftsforschung e. V (2017)

    Google Scholar 

  • F. Leuthold, H. Weigt, C. von Hirschhausen, A large-scale spatial optimization model of the European electricity market. Networks Spat. Econ. 12(1), 75–107 (2012)

    Article  Google Scholar 

  • P.D. Lund, J. Lindgren, J. Mikkola, J. Salpakari, Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 45, 785–807 (2015)

    Article  Google Scholar 

  • R. Mieth, C. Gerbaulet, C. von Hirschhausen, C. Kemfert, F. Kunz, R. Weinhold, Perspektiven für eine sichere, preiswerte und umweltverträgliche Energieversorgung in Bayern. Politikber- atung kompakt 97. Berlin: DIW Berlin - Deutsches Institut für Wirtschafts- forschung e. V (2015)

    Google Scholar 

  • R. Mieth, R. Weinhold, C. Gerbaulet, C. von Hirschhausen, C. Kemfert, Electricity grids and climate targets: new approaches to grid planning. DIW Econ. Bull. (Berlin) 5(6), 75–80 (2015)

    Google Scholar 

  • P. Nahmmacher, E. Schmidt, B. Knopf , Documentation of LIMES-EU - A long-term electricity system model for Europe (2014)

    Google Scholar 

  • C. Ohl, M. Eichhorn, The mismatch between regional spatial planning for wind power development in Germany and national eligibility criteria for feed-in tariffs-A case study in West Saxony. Land Use Policy 27(2), 243–254 (2010)

    Article  Google Scholar 

  • D. Ohlhorst, Germany’s energy transition policy between national targets and decentralized responsibilities. J. Integ. Environ. Sci. 12(4), 303–322 (2015)

    Article  Google Scholar 

  • L. Olmos, I.J. Pérez-Arriaga, A comprehensive approach for computation and implementation of efficient electricity transmission network charges. Energy Policy 37(12), 5285–5295 (2009)

    Article  Google Scholar 

  • S. Pfenninger, I. Staffell, Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 114, 1251–1265 (2016)

    Article  Google Scholar 

  • K. Poncelet, H. Höschle, E. Delarue, A. Virag, W. D’haeseleer, Selecting representative days for capturing the implications of integrating intermittent renewables in generation expansion planning problems. IEEE Trans. Power Syst. 32(3), 1936–1948 (2016)

    Google Scholar 

  • J. Rosellón, T. Kristiansen (eds.), Financial transmission rights: analysis, experiences and prospects, vol. 7 (Lecture notes in energy (Springer, London, New York, 2013)

    Google Scholar 

  • D.P. Schlachtberger, T. Brown, S. Schramm, M. Greiner, The benefits of cooperation in a highly renewable European electricity network. Energy 134, 469–481 (2017)

    Article  Google Scholar 

  • J. Weibezahn, M. Kendziorski, Illustrating the benefits of openness: a large-scale spatial economic dispatch model using the Julia language. Energies 12(6), 1153 (2019)

    Article  Google Scholar 

  • R. Weinhold, R. Mieth, Fast Security-Constrained Optimal Power Flow through Low-Impact and Redundancy Screening. IEEE Transactions on Power Systems (2020)

    Google Scholar 

  • A. Zerrahn, W.-P. Schill, A greenfield model to evaluate long-run power storage requirements for high shares of renewables. DIW Discussion Paper 1457. Berlin: DIW Berlin - Deutsches Institut für Wirtschaftsforschung e. V (2015)

    Google Scholar 

Download references

Acknowledgements

This work was carried out as part of the project “Long-term planning and short-term optimization of the German electricity system within the European framework: further development of methods and models to analyze the electricity system including the heat and gas sector,” funded through grant “LKD-EU,” FKZ 03ET4028A, German Federal Ministry for Economic Affairs and Energy. The authors would like to thank Alexander Roth for comments. The usual disclaimer applies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Weibezahn .

Editor information

Editors and Affiliations

Model Nomenclature

Model Nomenclature

1.1 Model Nodes

Table 4 gives an overview of all NUTS2 area codes in Germany used as nodes in the model.

Table 4 List of NUTS2 area codes for Germany
Table 5 Model sets
Table 6 Model variables
Table 7 Model parameters

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weibezahn, J., Kendziorski, M., Kramer, H., von Hirschhausen, C. (2020). The Impact of Transmission Development on a 100% Renewable Electricity Supply—A Spatial Case Study on the German Power System. In: Hesamzadeh, M.R., Rosellón, J., Vogelsang, I. (eds) Transmission Network Investment in Liberalized Power Markets. Lecture Notes in Energy, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-030-47929-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47929-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47928-2

  • Online ISBN: 978-3-030-47929-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics