Skip to main content

Progress on Wireless LVAD and Energy Sources for Mechanical Circulatory Systems

  • Chapter
  • First Online:
Mechanical Support for Heart Failure

Abstract

The energy systems of mechanical circulatory support devices have evolved significantly since the inception of the Artificial Heart Program in 1963. The transition from bulky paracorporeal pulsatile blood pumps to continuous flow devices has facilitated the use of mechanical circulatory support (MCS) in a larger population of heart failure patients. While there has been improvement in pump reliability, MCS therapy is still limited by adverse events related to device implantation. The most common events affecting MCS patients are device-related infections. Despite the adoption of smaller continuous flow pump technology, the pump peripherals, including the driveline, have remained the same. Innovative energy transmission techniques, like transcutaneous energy transfer systems (TETS) and wireless power transfer via resonantly coupled inductors, have provided a framework to eliminate device-related infections and prevent hospital readmissions. Five decades after the initial goal of providing fully implantable heart replacement, the advancement of wireless energy systems has provided the basis by which full MCS system implantability and improved patient quality of life can be achieved. This paper reviews the most recent advancements of wireless power transfer specifically for MCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292.

    PubMed  Google Scholar 

  2. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.

    CAS  PubMed  Google Scholar 

  3. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    CAS  PubMed  Google Scholar 

  4. Bonde P, Ku NC, Genovese EA, Bermudez CA, Bhama JK, Ciarleglio MM, et al. Model for end-stage liver disease score predicts adverse events related to ventricular assist device therapy. Ann Thorac Surg. 2012;93(5):1541–7; discussion 7–8.

    PubMed  Google Scholar 

  5. Bonde P, Dew MA, Meyer D, Tallaj JJ, Martin T, Hollifield KA, et al. 4 National trends in readmission (REA) rates following left ventricular assist device (LVAD) therapy. J Heart Lung Transplant. 2011;30(4):S9.

    Google Scholar 

  6. Pereda D, Conte JV. Left ventricular assist device driveline infections. Cardiol Clin. 2011;29(4):515–27.

    PubMed  Google Scholar 

  7. Kormos RL, Bonde P, Bermudez CA, Lockard KL, Genovese EA, Teuteberg JJ, et al. 261: The ventricular assist device (VAD) driveline: what is the price of living with this technology? J Heart Lung Transplant. 2010;29(2):S89.

    Google Scholar 

  8. Zierer A, Melby SJ, Voeller RK, Guthrie TJ, Ewald GA, Shelton K, et al. Late-onset driveline infections: the Achilles’ heel of prolonged left ventricular assist device support. Ann Thorac Surg. 2007;84(2):515–20.

    PubMed  Google Scholar 

  9. Waters BH, Sample AP, Bonde P, Smith JR. Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system. Proc IEEE. 2012;100(1):138–49.

    Google Scholar 

  10. Waters BH, Smith JR, Bonde P. Innovative free-range resonant electrical energy delivery system (FREE-D system) for a ventricular assist device using wireless power. ASAIO J. 2014;60(1):31–7.

    PubMed  Google Scholar 

  11. Stewart GC, Givertz MM. Mechanical circulatory support for advanced heart failure patients and technology in evolution. Circulation. 2012;125(10):1304–15.

    PubMed  Google Scholar 

  12. Lubeck DP. The artificial heart. Costs, risks, and benefits--an update. Int J Technol Assess Health Care. 1986;2(3):369–86.

    CAS  PubMed  Google Scholar 

  13. Hogness JR, VanAntwerp M. The artificial heart: prototypes, policies, and patients. Washington, DC: National Academies Press; 1991.

    Google Scholar 

  14. Mott WE, Cole DW Jr. Development of a nuclear-powered artificial heart. ASAIO J. 1972;18(1):152–6.

    CAS  Google Scholar 

  15. Norman JC, Molokhia FA, Harmison LT, Whalen RL, Huffman FN. An implantable nuclear-fueled circulatory support system. I. Systems analysis of conception, design, fabrication and initial in vivo testing. Ann Surg. 1972;176(4):492.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Whalen R, Molokhia F, Jeffery D, Huffman F, Norman J. Current studies with simulated nuclear-powered left ventricular assist devices. ASAIO J. 1972;18(1):146–51.

    CAS  Google Scholar 

  17. Tchantchaleishvili V, Bush BS, Swartz MF, Day SW, Massey HT. Plutonium-238: an ideal power source for intracorporeal ventricular assist devices? ASAIO J. 2012;58(6):550–3.

    CAS  PubMed  Google Scholar 

  18. Poirier V. Will we see nuclear-powered ventricular assist devices? ASAIO J. 2012;58(6):546–7.

    PubMed  Google Scholar 

  19. Lillehei CW, Gott VL, Hodges PC, Long DM, Bakken EE. Transistor pacemaker for treatment of complete atrioventricular dissociation. JAMA. 1960;172(18):2006–10.

    CAS  Google Scholar 

  20. Chardack WM, Gage AA, Greatbatch W. A transistorized, self-contained, implantable pacemaker for the long-term correction of complete heart block. Surgery. 1960;48(Oct):643–54.

    CAS  PubMed  Google Scholar 

  21. MacLean GK, Aiken PA, Adams WA, Mussivand T. Preliminary evaluation of rechargeable lithium-ion cells for an implantable battery pack. J Power Sources. 1995;56(1):69–74.

    CAS  Google Scholar 

  22. MacLean GK, Aiken PA, Adams WA, Mussivand T. Comparison of rechargeable lithium and nickel/cadmium battery cells for implantable circulatory support devices. Artif Organs. 1994;18(4):331–4.

    CAS  PubMed  Google Scholar 

  23. Okamoto E, Watanabe K, Hashiba K, Inoue T, Iwazawa E, Momoi M, et al. Optimum selection of an implantable secondary battery for an artificial heart by examination of the cycle life test. ASAIO J. 2002;48(5):495–502.

    CAS  PubMed  Google Scholar 

  24. Pae WE, Connell JM, Adelowo A, Boehmer JP, Korfer R, El-Banayosy A, et al. Does total implantability reduce infection with the use of a left ventricular assist device? The LionHeart experience in Europe. J Heart Lung Transplant. 2007;26(3):219–29.

    PubMed  Google Scholar 

  25. Schuder JC, Stephenson HE Jr, Townsend JF. Energy transfer into a closed chest by means of stationary coupling coils and a portable high-power oscillator. Trans Am Soc Artif Intern Organs. 1961;7:327–31.

    CAS  PubMed  Google Scholar 

  26. Sherman C, Clay W, Dasse K, Daly B. Energy transmission across intact skin for powering artificial internal organs. Trans Am Soc Artif Intern Organs. 1981;27:137–41.

    CAS  PubMed  Google Scholar 

  27. Puers R, Vandevoorde G. Recent progress on transcutaneous energy transfer for total artificial heart systems. Artif Organs. 2001;25(5):400–5.

    CAS  PubMed  Google Scholar 

  28. Rintoul TC, Dolgin A. Thoratec transcutaneous energy transformer system: a review and update. ASAIO J. 2004;50(4):397–400.

    PubMed  Google Scholar 

  29. Kusserow BK. The use of a magnetic field to remotely power an implantable blood pump. Preliminary report. Trans Am Soc Artif Intern Organs. 1960;6:292–8.

    CAS  PubMed  Google Scholar 

  30. Schuder JC, Stephenson HE. Energy transport into the closed chest from a set of very-large mutually orthogonal coils. Trans Am Inst Electr Eng Part I: Commun Electron. 1963;81(6):527–34.

    Google Scholar 

  31. Schuder JC. Powering an artificial heart: birth of the inductively coupled-radio frequency system in 1960. Artif Organs. 2002;26(11):909–15.

    PubMed  Google Scholar 

  32. Mehta SM, Pae WE Jr, Rosenberg G, Snyder AJ, Weiss WJ, Lewis JP, et al. The LionHeart LVD-2000: a completely implanted left ventricular assist device for chronic circulatory support. Ann Thorac Surg. 2001;71(3 Suppl):S156–61; discussion S83–4.

    CAS  PubMed  Google Scholar 

  33. Okamoto E, Yamamoto Y, Akasaka Y, Motomura T, Mitamura Y, Nose Y. A new transcutaneous energy transmission system with hybrid energy coils for driving an implantable biventricular assist device. Artif Organs. 2009;33(8):622–6.

    PubMed  Google Scholar 

  34. Ozeki T, Chinzei T, Abe Y, Saito I, Isoyama T, Mochizuki S, et al. Functions for detecting malposition of transcutaneous energy transmission coils. ASAIO J. 2003;49(4):469–74.

    PubMed  Google Scholar 

  35. Iwawaki K, Watada M, Takatani S, Um YS, editors. The design of core-type transcutaneous energy transmission systems for artificial heart. Industrial Electronics Society, 2004 IECON 2004 30th annual conference of IEEE; 2–6 November 2004.

    Google Scholar 

  36. Miura H, Arai S, Kakubari Y, Sato F, Matsuki H, Sato T. Improvement of the transcutaneous energy transmission system utilizing ferrite cored coils for artificial hearts. IEEE Trans Magn. 2006;42(10):3578–80.

    Google Scholar 

  37. Hassler WL, Dlugos DF, inventors; Google Patents, assignee. Low frequency transcutaneous energy transfer to implanted medical device. United States of America patent US 7599743 B2. 2009.

    Google Scholar 

  38. Dowling RD, Gray LA Jr, Etoch SW, Laks H, Marelli D, Samuels L, et al. The AbioCor implantable replacement heart. Ann Thorac Surg. 2003;75(6 Suppl):S93–9.

    PubMed  Google Scholar 

  39. Dowling RD, Gray LA Jr, Etoch SW, Laks H, Marelli D, Samuels L, et al. Initial experience with the AbioCor implantable replacement heart system. J Thorac Cardiovasc Surg. 2004;127(1):131–41.

    PubMed  Google Scholar 

  40. Samuels LE, Dowling R. Total artificial heart: destination therapy. Cardiol Clin. 2003;21(1):115–8.

    PubMed  Google Scholar 

  41. El-Banayosy A, Arusoglu L, Kizner L, Morshuis M, Tenderich G, Pae WE Jr, et al. Preliminary experience with the LionHeart left ventricular assist device in patients with end-stage heart failure. Ann Thorac Surg. 2003;75(5):1469–75.

    PubMed  Google Scholar 

  42. Mehta SM, Silber D, Boehmer JP, Christensen D, Pae WE Jr. Report of the first U.S. patient successfully supported long term with the LionHeart completely implantable left ventricular assist device system. ASAIO J. 2006;52(6):e31–2.

    PubMed  Google Scholar 

  43. Yamamoto T, Koshiji K, Homma A, Tatsumi E, Taenaka Y. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart. J Artif Organs. 2008;11(4):238–40.

    PubMed  Google Scholar 

  44. Fletcher NH, Rossing TD. The physics of musical instruments. 2nd ed. New York: Springer Science & Business Media; 1998. 756 p.

    Google Scholar 

  45. Sample AP, Meyer DA, Smith JR. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans Ind Electron. 2011;58(2):544–54.

    Google Scholar 

  46. Tesla N, inventor; Google Patents, assignee. Apparatus for transmitting electrical energy. United States of America patent US1119732 A. 1914.

    Google Scholar 

  47. Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljačić M. Wireless power transfer via strongly coupled magnetic resonances. Science. 2007;317(5834):83–6.

    CAS  PubMed  Google Scholar 

  48. Karalis A, Joannopoulos JD, Soljačić M. Efficient wireless non-radiative mid-range energy transfer. Ann Phys. 2008;323(1):34–48.

    CAS  Google Scholar 

  49. Cannon BL, Hoburg JF, Stancil DD, Goldstein SC. Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans Power Electron. 2009;24(7):1819–25.

    Google Scholar 

  50. Waters B, Sample A, Smith J, Bonde P. Toward total implantability using free-range resonant electrical energy delivery system: achieving untethered ventricular assist device operation over large distances. Cardiol Clin. 2011;29(4):609–25.

    PubMed  Google Scholar 

  51. Waters BH, Park J, Bouwmeester JC, Valdovinos J, Geirsson A, Sample AP, et al. Electrical power to run ventricular assist devices using the free-range resonant electrical energy delivery system. J Heart Lung Transplant. 2018;37(12):1467–74.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Bonde MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valdovinos, J., Park, J., Smith, J., Bonde, P. (2020). Progress on Wireless LVAD and Energy Sources for Mechanical Circulatory Systems. In: Karimov, J., Fukamachi, K., Starling, R. (eds) Mechanical Support for Heart Failure . Springer, Cham. https://doi.org/10.1007/978-3-030-47809-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47809-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47808-7

  • Online ISBN: 978-3-030-47809-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics