Skip to main content

Progress on Total Artificial Heart for Pediatric Patients

  • Chapter
  • First Online:
Mechanical Support for Heart Failure

Abstract

Mechanical circulatory support devices, especially ventricular assist devices (VADs), have been increasingly used for both adult and pediatric patients with end-stage heart failure. However, patients with congenital heart disease (CHD) are often not mechanically supported because they are at higher risk of VAD complications. CHD often involves both ventricles, and in such cases, either a biventricular assist device or total artificial heart (TAH) is needed. No pediatric TAHs exist other than SynCardia 50 cc TAH (SynCardia Systems, Inc., Tucson, AZ), which is intended only for patients with a body surface area of ≥1.2 m2. Therefore, new TAHs for pediatric patients are under development to fill this gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360.

    Google Scholar 

  2. Mancini D, Colombo PC. Left ventricular assist devices: a rapidly evolving alternative to transplant. J Am Coll Cardiol. 2015;65:2542–55.

    Article  Google Scholar 

  3. Moazami N, Hoercher KJ, Fukamachi K, Kobayashi M, Smedira NG, Massiello A, et al. Mechanical circulatory support for heart failure: past, present and a look at the future. Expert Rev Med Devices. 2013;10:55–71.

    Article  CAS  Google Scholar 

  4. Mehra MR, Goldstein DJ, Uriel N, Cleveland JC Jr, Yuzefpolskaya M, Salerno C, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N Engl J Med. 2018;378:1386–95.

    Article  Google Scholar 

  5. Lund LH, Khush KK, Cherikh WS, Goldfarb S, Kucheryavaya AY, Levvey BJ, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult heart transplantation report-2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36:1037–46.

    Article  Google Scholar 

  6. Villa CR, Khan MS, Zafar F, Morales DLS, Lorts A. United States trends in pediatric ventricular assist implantation as bridge to transplantation. ASAIO J. 2017;63:470–5.

    Article  Google Scholar 

  7. Rossano JW, Dipchand AI, Edwards LB, Goldfarb S, Kucheryavaya AY, Levvey Rn BJ, et al. The registry of the International Society for Heart and Lung Transplantation: nineteenth pediatric heart transplantation report-2016; focus theme: primary diagnostic indications for transplant. J Heart Lung Transplant. 2016;35:1185–95.

    Article  Google Scholar 

  8. Zafar F, Castleberry C, Khan MS, Mehta V, Bryant R 3rd, Lorts A, et al. Pediatric heart transplant waiting list mortality in the era of ventricular assist devices. J Heart Lung Transplant. 2015;34:82–8.

    Article  Google Scholar 

  9. Kirklin JK. Advances in mechanical assist devices and artificial hearts for children. Curr Opin Pediatr. 2015;27:597–603.

    Article  Google Scholar 

  10. Steffen RJ, Miletic KG, Schraufnagel DP, Vargo PR, Fukamachi K, Stewart RD, et al. Mechanical circulatory support in pediatrics. Expert Rev Med Devices. 2016;13:507–14.

    Article  CAS  Google Scholar 

  11. Rossano JW, Cherikh WS, Chambers DC, Goldfarb S, Khush K, Kucheryavaya AY, et al. The registry of the International Society for Heart and Lung Transplantation: twentieth Pediatric heart transplantation report-2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36:1060–9.

    Article  Google Scholar 

  12. Gilboa SM, Salemi JL, Nembhard WN, Fixler DE, Correa A. Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation. 2010;122:2254–63.

    Article  Google Scholar 

  13. Villa CR, Morales DLS. The total artificial heart in end-stage congenital heart disease. Front Physiol. 2017;8:131.

    Article  Google Scholar 

  14. Morales DL, Khan MS, Gottlieb EA, Krishnamurthy R, Dreyer WJ, Adachi I. Implantation of total artificial heart in congenital heart disease. Semin Thorac Cardiovasc Surg. 2012;24:142–3.

    Article  Google Scholar 

  15. Adachi I, Morales DS. Implantation of total artificial heart in congenital heart disease. J Vis Exp. 2014;(89):51569.

    Google Scholar 

  16. Rossano JW, Goldberg DJ, Fuller S, Ravishankar C, Montenegro LM, Gaynor JW. Successful use of the total artificial heart in the failing Fontan circulation. Ann Thorac Surg. 2014;97:1438–40.

    Article  Google Scholar 

  17. Blume ED, VanderPluym C, Lorts A, Baldwin JT, Rossano JW, Morales DLS, et al. Second annual pediatric interagency registry for mechanical circulatory support (PediMACS) report: pre-implant characteristics and outcomes. J Heart Lung Transplant. 2018;37:38–45.

    Article  Google Scholar 

  18. Hetzer R, Potapov EV, Stiller B, Weng Y, Hubler M, Lemmer J, et al. Improvement in survival after mechanical circulatory support with pneumatic pulsatile ventricular assist devices in pediatric patients. Ann Thorac Surg. 2006;82:917–24; discussion 24–5.

    Article  Google Scholar 

  19. Reinhartz O, Hill JD, Al-Khaldi A, Pelletier MP, Robbins RC, Farrar DJ. Thoratec ventricular assist devices in pediatric patients: update on clinical results. ASAIO J. 2005;51:501–3.

    Article  Google Scholar 

  20. Baldwin JT, Borovetz HS, Duncan BW, Gartner MJ, Jarvik RK, Weiss WJ. The national heart, lung, and blood institute pediatric circulatory support program: a summary of the 5-year experience. Circulation. 2011;123:1233–40.

    Article  Google Scholar 

  21. Copeland JG, Smith RG, Arabia FA, Nolan PE, Sethi GK, Tsau PH, et al. CardioWest Total Artificial Heart Investigators. Cardiac replacement with a total artificial heart as a bridge to transplantation. N Engl J Med. 2004;351:859–67.

    Article  CAS  Google Scholar 

  22. https://syncardia.com/clinicians/clinical-resources/u-s-clinical-trials/. Accessed on 10.21.18.

  23. Karimov JH, Moazami N, Kobayashi M, Sale S, Such K, Byram N, et al. First report of 90-day support of 2 calves with a continuous-flow total artificial heart. J Thorac Cardiovasc Surg. 2015;150:687–93.e1. PMCID: PMC4554829.

    Article  Google Scholar 

  24. Fukamachi K, Horvath DJ, Massiello AL, Fumoto H, Horai T, Rao S, et al. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study. J Heart Lung Transplant. 2010;29:13–20. PMCID: PMC2817999.

    Article  Google Scholar 

  25. Fukamachi K, Karimov JH, Byram NA, Sunagawa G, Dessoffy R, Miyamoto T, et al. Anatomical study of the Cleveland Clinic continuous-flow total artificial heart in adult and pediatric configurations. J Artif Organs. 2018;21:383–6.

    Article  Google Scholar 

  26. Shiose A, Nowak K, Horvath DJ, Massiello AL, Golding LA, Fukamachi K. Speed modulation of the continuous-flow total artificial heart to simulate a physiologic arterial pressure waveform. ASAIO J. 2010;56:403–9. PMCID: PMC2933186.

    Article  Google Scholar 

  27. Fukamachi K, Karimov JH, Horvath DJ, Sunagawa G, Byram NA, Kuban BD, et al. Initial in vitro testing of a paediatric continuous-flow total artificial heart. Interact Cardiovasc Thorac Surg. 2018;26:897–901.

    Article  Google Scholar 

  28. Karimov JH, Horvath DJ, Byram N, Sunagawa G, Kuban BD, Gao S, et al. Early in vivo experience with the pediatric continuous-flow total artificial heart. J Heart Lung Transplant. 2018;37:1029–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Fukamachi MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fukamachi, K., Karimov, J.H., Miyamoto, T. (2020). Progress on Total Artificial Heart for Pediatric Patients. In: Karimov, J., Fukamachi, K., Starling, R. (eds) Mechanical Support for Heart Failure . Springer, Cham. https://doi.org/10.1007/978-3-030-47809-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47809-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47808-7

  • Online ISBN: 978-3-030-47809-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics