Skip to main content

Fertility Preservation Considerations in Female Patients with Benign and Malignant Hematologic Disease

  • Chapter
  • First Online:
Female and Male Fertility Preservation

Abstract

Hematological diseases, both malignant and benign, can now be considered as potentially “curable” in many circumstances. The treatments, however, may carry a significant impact on fertility, especially high-dose conditioning treatments for hematopoietic stem cell transplantation which results in a 90% chance of premature ovarian insufficiency (POI). Fertility preservation in this group of patients involves some specific challenges, which include: (1) the age of patient, as many patients will be pre-pubertal; (2) urgency, as treatments often need to be started immediately; thus a delay for ovarian stimulation is not possible; and (3) the potential presence of malignant cells within ovarian tissue remains a major concern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Office for National Statistics. Cancer registration statistics, England: 2017. 2019 [updated 24/4/2019. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/cancerregistrationstatisticsengland/2017#the-three-most-common-cancers-vary-by-sex-and-age-group.

  2. Leukemia and Lymphoma Society. Facts 2018-2019. 2019 [updated 31/3/2019. https://www.lls.org/sites/default/files/file_assets/PS80_Facts_Book_2018-19_FINAL.pdf.

  3. Kohne E. Hemoglobinopathies: clinical manifestations, diagnosis, and treatment. Dtsch Arztebl Int. 2011;108(31–32):532–40.

    PubMed  PubMed Central  Google Scholar 

  4. Chapman RM, Sutcliffe SB, Malpas JS. Cytotoxic-induced ovarian failure in women with Hodgkin’s disease. I. Hormone function. JAMA. 1979;242(17):1877–81.

    Article  CAS  PubMed  Google Scholar 

  5. Lehmann L, El-Haddad A, Barr RD. Global approach to hematologic malignancies. Hematol Oncol Clin North Am. 2016;30(2):417–32.

    Article  PubMed  Google Scholar 

  6. ESMO Guidelines Committee, Eichhorst B, Robak T, Montserrat E, Ghia P, Hillmen P, et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl_5):v78–84.

    Google Scholar 

  7. Höglund M, Sandin F, Simonsson B. Epidemiology of chronic myeloid leukaemia: an update. Ann Hematol. 2015;94(2):241–7.

    Article  Google Scholar 

  8. de la Fuente J, Baruchel A, Biondi A, de Bont E, Dresse MF, Suttorp M, et al. Managing children with chronic myeloid leukaemia (CML): recommendations for the management of CML in children and young people up to the age of 18 years. Br J Haematol. 2014;167(1):33–47.

    Article  PubMed  Google Scholar 

  9. Schultheis B, Nijmeijer BA, Yin H, Gosden RG, Melo JV. Imatinib mesylate at therapeutic doses has no impact on folliculogenesis or spermatogenesis in a leukaemic mouse model. Leuk Res. 2012;36(3):271–4.

    Article  CAS  PubMed  Google Scholar 

  10. Zamah AM, Mauro MJ, Druker BJ, Oktay K, Egorin MJ, Cedars MI, et al. Will imatinib compromise reproductive capacity? Oncologist. 2011;16(10):1422–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gonfloni S, Di Tella L, Caldarola S, Cannata SM, Klinger FG, Di Bartolomeo C, et al. Inhibition of the c-Abl-TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nat Med. 2009;15(10):1179–85.

    Article  CAS  PubMed  Google Scholar 

  12. Morgan S, Lopes F, Gourley C, Anderson RA, Spears N. Cisplatin and doxorubicin induce distinct mechanisms of ovarian follicle loss; imatinib provides selective protection only against cisplatin. PLoS One. 2013;8(7):e70117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mukhopadhyay A, Dasgupta S, Kanti Ray U, Gharami F, Bose CK, Mukhopadhyay S. Pregnancy outcome in chronic myeloid leukemia patients on imatinib therapy. Ir J Med Sci. 2015;184(1):183–8.

    Article  CAS  PubMed  Google Scholar 

  14. Abruzzese E, Trawinska MM, Perrotti AP, De Fabritiis P. Tyrosine kinase inhibitors and pregnancy. Mediterr J Hematol Infect Dis. 2014;6(1):e2014028.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cortes JE, Abruzzese E, Chelysheva E, Guha M, Wallis N, Apperley JF. The impact of dasatinib on pregnancy outcomes. Am J Hematol. 2015;90(12):1111–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eichenauer DA, Aleman BMP, Andre M, Federico M, Hutchings M, Illidge T, et al. Hodgkin lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv19–29.

    Article  CAS  PubMed  Google Scholar 

  17. Swerdlow AJ, Cooke R, Bates A, Cunningham D, Falk SJ, Gilson D, et al. Risk of premature menopause after treatment for Hodgkin’s lymphoma. J Natl Cancer Inst. 2014;106(9):dju207.

    Article  PubMed  CAS  Google Scholar 

  18. Johnson P, Federico M, Kirkwood A, Fossa A, Berkahn L, Carella A, et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med. 2016;374(25):2419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim SS, Donnez J, Barri P, Pellicer A, Patrizio P, Rosenwaks Z, et al. Recommendations for fertility preservation in patients with lymphoma, leukemia, and breast cancer. J Assist Reprod Genet. 2012;29(6):465–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Anderson RA, Remedios R, Kirkwood AA, Patrick P, Stevens L, Clifton-Hadley L, et al. Determinants of ovarian function after response-adapted therapy in patients with advanced Hodgkin’s lymphoma (RATHL): a secondary analysis of a randomised phase 3 trial. Lancet Oncol. 2018;19(10):1328–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andre MPE, Girinsky T, Federico M, Reman O, Fortpied C, Gotti M, et al. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2017;35(16):1786–94.

    Article  CAS  PubMed  Google Scholar 

  22. Gallamini A, Tarella C, Viviani S, Rossi A, Patti C, Mule A, et al. Early chemotherapy intensification with escalated BEACOPP in patients with advanced-stage Hodgkin lymphoma with a positive interim positron emission tomography/computed tomography scan after two ABVD cycles: long-term results of the GITIL/FIL HD 0607 trial. J Clin Oncol. 2018;36(5):454–62.

    Article  CAS  PubMed  Google Scholar 

  23. Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia. Lancet. 2018;391(10116):155–67.

    Article  PubMed  Google Scholar 

  24. Uysal A, Alkan G, Kurtoglu A, Erol O, Kurtoglu E. Diminished ovarian reserve in women with transfusion-dependent beta-thalassemia major: is iron gonadotoxic? Eur J Obstet Gynecol Reprod Biol. 2017;216:69–73.

    Article  CAS  PubMed  Google Scholar 

  25. Mensi L, Borroni R, Reschini M, Cassinerio E, Vegetti W, Baldini M, et al. Oocyte quality in women with thalassaemia major: insights from IVF cycles. Eur J Obstet Gynecol Reprod Biol X. 2019;3:100048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez-Vazquez L, Marti J. An animal model for assessing the effects of hydroxyurea exposure suggests that the administration of this agent to pregnant women and young infants may not be as safe as we thought. Int J Mol Sci. 2018;19(12):3986.

    Article  PubMed Central  Google Scholar 

  27. Ghafuri DL, Stimpson SJ, Day ME, James A, DeBaun MR, Sharma D. Fertility challenges for women with sickle cell disease. Expert Rev Hematol. 2017;10(10):891–901.

    Article  CAS  PubMed  Google Scholar 

  28. Elchuri SV, Williamson RS, Clark Brown R, Haight AE, Spencer JB, Buchanan I, et al. The effects of hydroxyurea and bone marrow transplant on anti-Mullerian hormone (AMH) levels in females with sickle cell anemia. Blood Cells Mol Dis. 2015;55(1):56–61.

    Article  CAS  PubMed  Google Scholar 

  29. Passweg JR, Baldomero H, Bader P, Bonini C, Cesaro S, Dreger P, et al. Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually. Bone Marrow Transplant. 2016;51(6):786–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Borgmann-Staudt A, Rendtorff R, Reinmuth S, Hohmann C, Keil T, Schuster FR, et al. Fertility after allogeneic haematopoietic stem cell transplantation in childhood and adolescence. Bone Marrow Transplant. 2012;47(2):271–6.

    Article  CAS  PubMed  Google Scholar 

  31. Shanis D, Merideth M, Pulanic TK, Savani BN, Battiwalla M, Stratton P. Female long-term survivors after allogeneic hematopoietic stem cell transplantation: evaluation and management. Semin Hematol. 2012;49(1):83–93.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Salooja N, Szydlo RM, Socie G, Rio B, Chatterjee R, Ljungman P, et al. Pregnancy outcomes after peripheral blood or bone marrow transplantation: a retrospective survey. Lancet. 2001;358(9278):271–6.

    Article  CAS  PubMed  Google Scholar 

  33. Wallace WH, Thomson AB, Saran F, Kelsey TW. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys. 2005;62(3):738–44.

    Article  PubMed  Google Scholar 

  34. Levine JM, Whitton JA, Ginsberg JP, Green DM, Leisenring WM, Stovall M, et al. Nonsurgical premature menopause and reproductive implications in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Cancer. 2018;124(5):1044–52.

    Article  PubMed  Google Scholar 

  35. Klein OR, Buddenbaum J, Tucker N, Chen AR, Gamper CJ, Loeb D, et al. Nonmyeloablative Haploidentical bone marrow transplantation with post-transplantation cyclophosphamide for pediatric and young adult patients with high-risk hematologic malignancies. Biol Blood Marrow Transplant. 2017;23(2):325–32.

    Article  PubMed  Google Scholar 

  36. Atilla E, Ataca Atilla P, Demirer T. A review of myeloablative vs reduced intensity/non-myeloablative regimens in allogeneic hematopoietic stem cell transplantations. Balkan Med J. 2017;34(1):1–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Shimoji S, Hashimoto D, Tsujigiwa H, Miyawaki K, Kato K, Takahashi S, et al. Graft-versus-host disease targets ovary and causes female infertility in mice. Blood. 2017;129(9):1216–25.

    Article  CAS  PubMed  Google Scholar 

  38. Joshi S, Savani BN, Chow EJ, Gilleece MH, Halter J, Jacobsohn DA, et al. Clinical guide to fertility preservation in hematopoietic cell transplant recipients. Bone Marrow Transplant. 2014;49(4):477–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Critchley HO, Wallace WH. Impact of cancer treatment on uterine function. J Natl Cancer Inst Monogr. 2005;34:64–8.

    Article  Google Scholar 

  40. Meadows AT, Friedman DL, Neglia JP, Mertens AC, Donaldson SS, Stovall M, et al. Second neoplasms in survivors of childhood cancer: findings from the Childhood Cancer Survivor Study cohort. J Clin Oncol. 2009;27(14):2356–62.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pecker LH, Maher JY, Law JY, Beach MC, Lanzkron S, Christianson MS. Risks associated with fertility preservation for women with sickle cell anemia. Fertil Steril. 2018;110(4):720–31.

    Article  PubMed  Google Scholar 

  42. Van der Ven H, Liebenthron J, Beckmann M, Toth B, Korell M, Krüssel J, et al. Ninety-five orthotopic transplantations in 74 women of ovarian tissue after cytotoxic treatment in a fertility preservation network: tissue activity, pregnancy and delivery rates. Hum Reprod. 2016;31(9):2031–41.

    Article  PubMed  Google Scholar 

  43. Bastings L, Beerendonk CC, Westphal JR, Massuger LF, Kaal SE, van Leeuwen FE, et al. Autotransplantation of cryopreserved ovarian tissue in cancer survivors and the risk of reintroducing malignancy: a systematic review. Hum Reprod Update. 2013;19(5):483–506.

    Article  CAS  PubMed  Google Scholar 

  44. Pacheco F, Oktay K. Current success and efficiency of autologous ovarian transplantation: a meta-analysis. Reprod Sci. 2017;24(8):1111–20.

    Article  PubMed  Google Scholar 

  45. Dolmans M-M, Luyckx V, Donnez J, Andersen CY, Greve T. Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue. Fertil Steril. 2013;99(6):1514–22.

    Article  PubMed  Google Scholar 

  46. Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364(9443):1405–10.

    Article  CAS  PubMed  Google Scholar 

  47. Shapira M, Raanani H, Barshack I, Amariglio N, Derech-Haim S, Marciano MN, et al. First delivery in a leukemia survivor after transplantation of cryopreserved ovarian tissue, evaluated for leukemia cells contamination. Fertil Steril. 2018;109(1):48–53.

    Article  PubMed  Google Scholar 

  48. Matthews SJ, Picton H, Ernst E, Andersen CY. Successful pregnancy in a woman previously suffering from beta-thalassemia following transplantation of ovarian tissue cryopreserved before puberty. Minerva Ginecol. 2018;70(4):432–5.

    PubMed  Google Scholar 

  49. Demeestere I, Simon P, Dedeken L, Moffa F, Tsepelidis S, Brachet C, et al. Live birth after autograft of ovarian tissue cryopreserved during childhood. Hum Reprod. 2015;30(9):2107–9.

    Article  PubMed  Google Scholar 

  50. Senra JC, Roque M, Talim MCT, Reis FM, Tavares RLC. Gonadotropin-releasing hormone agonists for ovarian protection during cancer chemotherapy: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;51(1):77–86.

    Article  CAS  PubMed  Google Scholar 

  51. Chen H, Xiao L, Li J, Cui L, Huang W. Adjuvant gonadotropin-releasing hormone analogues for the prevention of chemotherapy-induced premature ovarian failure in premenopausal women. Cochrane Database Syst Rev. 2019;(3):Cd008018.

    Google Scholar 

  52. Lambertini M, Moore HCF, Leonard RCF, Loibl S, Munster P, Bruzzone M, et al. Gonadotropin-releasing hormone agonists during chemotherapy for preservation of ovarian function and fertility in premenopausal patients with early breast Cancer: a systematic review and meta-analysis of individual patient-level data. J Clin Oncol. 2018;36(19):1981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oktay K, Harvey BE, Partridge AH, Quinn GP, Reinecke J, Taylor HS, et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2018;36(19):1994–2001.

    Article  PubMed  Google Scholar 

  54. Kyono K, Doshida M, Toya M, Sato Y, Akahira J, Sasano H. Potential indications for ovarian autotransplantation based on the analysis of 5,571 autopsy findings of females under the age of 40 in Japan. Fertil Steril. 2010;93(7):2429–30.

    Article  PubMed  Google Scholar 

  55. Rosendahl M, Greve T, Andersen CY. The safety of transplanting cryopreserved ovarian tissue in cancer patients: a review of the literature. J Assist Reprod Genet. 2013;30(1):11–24.

    Article  PubMed  Google Scholar 

  56. Rosendahl M, Schmidt KT, Ernst E, Rasmussen PE, Loft A, Byskov AG, et al. Cryopreservation of ovarian tissue for a decade in Denmark: a view of the technique. Reprod Biomed Online. 2011;22(2):162–71.

    Article  PubMed  Google Scholar 

  57. Lotz L, Montag M, van der Ven H, von Wolff M, Mueller A, Hoffmann I, et al. Xenotransplantation of cryopreserved ovarian tissue from patients with ovarian tumors into SCID mice--no evidence of malignant cell contamination. Fertil Steril. 2011;95(8):2612–4.e1.

    Article  PubMed  Google Scholar 

  58. Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Measurable residual disease testing in acute myeloid leukaemia. Leukemia. 2017;31(7):1482–90.

    Article  CAS  PubMed  Google Scholar 

  59. Owen C, Christofides A, Johnson N, Lawrence T, MacDonald D, Ward C. Use of minimal residual disease assessment in the treatment of chronic lymphocytic leukemia. Leuk Lymphoma. 2017;58(12):2777–85.

    Article  PubMed  Google Scholar 

  60. Short NJ, Jabbour E. Minimal residual disease in acute lymphoblastic leukemia: how to recognize and treat it. Curr Oncol Rep. 2017;19(1):6.

    Article  PubMed  Google Scholar 

  61. Soares M, Saussoy P, Maskens M, Reul H, Amorim CA, Donnez J, et al. Eliminating malignant cells from cryopreserved ovarian tissue is possible in leukaemia patients. Br J Haematol. 2017;178(2):231–9.

    Article  CAS  PubMed  Google Scholar 

  62. Amiot C, Angelot-Delettre F, Zver T, Alvergnas-Vieille M, Saas P, Garnache-Ottou F, et al. Minimal residual disease detection of leukemic cells in ovarian cortex by eight-color flow cytometry. Hum Reprod. 2013;28(8):2157–67.

    Article  CAS  PubMed  Google Scholar 

  63. Shaw JM, Bowles J, Koopman P, Wood EC, Trounson AO. Ovary and ovulation: fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum Reprod. 1996;11(8):1668–73.

    Article  CAS  PubMed  Google Scholar 

  64. Aubard Y. Ovarian tissue xenografting. Eur J Obstet Gynecol Reprod Biol. 2003;108(1):14–8.

    Article  CAS  PubMed  Google Scholar 

  65. Dolmans MM, Marinescu C, Saussoy P, Van Langendonckt A, Amorim C, Donnez J. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood. 2010;116(16):2908–14.

    Article  CAS  PubMed  Google Scholar 

  66. Greve T, Clasen-Linde E, Andersen MT, Andersen MK, Sørensen SD, Rosendahl M, et al. Cryopreserved ovarian cortex from patients with leukemia in complete remission contains no apparent viable malignant cells. Blood. 2012;120(22):4311–6.

    Article  CAS  PubMed  Google Scholar 

  67. Telfer EE. Future developments: in vitro growth (IVG) of human ovarian follicles. Acta Obstet Gynecol Scand. 2019;98(5):653–8.

    Article  PubMed  Google Scholar 

  68. McLaughlin M, Albertini DF, Wallace WHB, Anderson RA, Telfer EE. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Mol Hum Reprod. 2018;24(3):135–42.

    Article  CAS  PubMed  Google Scholar 

  69. O’Brien MJ, Pendola JK, Eppig JJ. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod. 2003;68(5):1682–6.

    Article  PubMed  CAS  Google Scholar 

  70. Fasano G, Dechene J, Antonacci R, Biramane J, Vannin AS, Van Langendonckt A, et al. Outcomes of immature oocytes collected from ovarian tissue for cryopreservation in adult and prepubertal patients. Reprod Biomed Online. 2017;34(6):575–82.

    Article  CAS  PubMed  Google Scholar 

  71. Salama M, Woodruff TK. New advances in ovarian autotransplantation to restore fertility in cancer patients. Cancer Metastasis Rev. 2015;34(4):807–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Amorim CA, Shikanov A. The artificial ovary: current status and future perspectives. Future Oncol. 2016;12(20):2323–32.

    Article  CAS  PubMed  Google Scholar 

  73. Chiti MC, Dolmans MM, Mortiaux L, Zhuge F, Ouni E, Shahri PAK, et al. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity. J Assist Reprod Genet. 2018;35(1):41–8.

    Article  PubMed  Google Scholar 

  74. Chiti MC, Dolmans MM, Orellana R, Soares M, Paulini F, Donnez J, et al. Influence of follicle stage on artificial ovary outcome using fibrin as a matrix. Hum Reprod. 2016;31(2):427–35.

    CAS  PubMed  Google Scholar 

  75. Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW, et al. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun. 2017;8:15261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lui, Mw., Wallace, W.H.B., Anderson, R.A. (2022). Fertility Preservation Considerations in Female Patients with Benign and Malignant Hematologic Disease. In: Grynberg, M., Patrizio, P. (eds) Female and Male Fertility Preservation. Springer, Cham. https://doi.org/10.1007/978-3-030-47767-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47767-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47766-0

  • Online ISBN: 978-3-030-47767-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics