Skip to main content

Paradigms in Cancer Drug Development: A Universe with Many Galaxies

  • Chapter
  • First Online:
Phase I Oncology Drug Development
  • 614 Accesses

Abstract

Cytotoxic chemotherapeutics (CHTs) have been the backbone cancer therapy for many years. Recently, a rapidly growing body of evidence has demonstrated the interdependence of cancer genetics, epigenetics, and immunology, giving rise to the generation of new promising compounds. The development of new molecularly targeted agents (MTAs), immune checkpoint-targeted monoclonal antibodies (ICT mAbs), and epigenetic drugs (EPDs) has increased the ready-to-use arsenal for patients with different cancers, but at the same time, has resulted in many substantial changes in clinical trial design, altering the early drug development (EDD) landscape. Despite sharing common developmental principles, the significant differences in their mechanisms of action (MoAs) have led researchers to reconsider previous assumptions regarding the design and execution of Phase I clinical trials (Ph1), leading to the recognition of four established paradigms in oncology. In this chapter, we review drug development evolution with a broad view of the major differences in EDD between these four paradigms, namely CHTs, MTAs, ICT mAbs, and EPDs, addressing many of the controversial issues and challenges that helped shape them. Only a comprehensive view of their main characteristics will enable successful design of future therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  3. Rodon J. An (only) partially established paradigm of drug development of targeted therapies. Eur J Cancer. 2014;50:2037–9.

    Article  PubMed  Google Scholar 

  4. Hierro C, Azaro A, Argiles G, et al. Unveiling changes in the landscape of patient populations in cancer early drug development. Oncotarget. 2017;8:14158–72.

    Article  PubMed  Google Scholar 

  5. Ochoa de Olza M, Oliva M, Hierro C, et al. Early-drug development in the era of immuno-oncology: are we ready to face the challenges? Ann Oncol. 2018;29:1727–40.

    Article  CAS  PubMed  Google Scholar 

  6. Martin-Liberal J, Hierro C, Ochoa de Olza M, Rodon J. Immuno-oncology: the third paradigm in early drug development. Target Oncol. 2017;12:125–38.

    Article  PubMed  Google Scholar 

  7. Cramer SA, Adjei IM, Labhasetwar V. Advancements in the delivery of epigenetic drugs. Expert Opin Drug Deliv. 2015;12:1501–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Suraweera A, O’Byrne KJ, Richard DJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front Oncol. 2018;8:92.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Postel-Vinay S, Aspeslagh S, Lanoy E, et al. Challenges of phase 1 clinical trials evaluating immune checkpoint-targeted antibodies. Ann Oncol. 2016;27:214–24.

    Article  CAS  PubMed  Google Scholar 

  10. Le Tourneau C, Dieras V, Tresca P, et al. Current challenges for the early clinical development of anticancer drugs in the era of molecularly targeted agents. Target Oncol. 2010;5:65–72.

    Article  PubMed  Google Scholar 

  11. Lloyd HH. Estimation of tumor cell kill from Gompertz growth curves. Cancer Chemother Rep. 1975;59:267–77.

    CAS  PubMed  Google Scholar 

  12. Heller JR. Cancer chemotherapy, history and present status. Bull N Y Acad Med. 1962;38:348–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fernando J, Jones R. The principles of cancer treatment by chemotherapy. Surgery (Oxford). 2015;33(3):131–5.

    Article  Google Scholar 

  14. Schmidt C. The Gompertzian view: Norton honored for role in establishing cancer treatment approach. J Natl Cancer Inst. 2004;96(20):1492–3.

    Article  PubMed  Google Scholar 

  15. Hansen AR, Cook N, Ricci MS, et al. Choice of starting dose for biopharmaceuticals in first-in-human phase I cancer clinical trials. Oncologist. 2015;20:653–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Storer BE. Design and analysis of phase I clinical trials. Biometrics. 1989;45:925–37.

    Article  CAS  PubMed  Google Scholar 

  17. Simon R, Freidlin B, Rubinstein L, et al. Accelerated titration designs for phase I clinical trials in oncology. J Natl Cancer Inst. 1997;89:1138–47.

    Article  CAS  PubMed  Google Scholar 

  18. O’Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics. 1990;46:33–48.

    Article  PubMed  Google Scholar 

  19. Lundqvist EÅ, Fujiwara K, Seoud M. Principles of chemotherapy. Int J Gynecol Obstet. 2015;131:S146–9.

    Article  Google Scholar 

  20. Henderson IC, Berry DA, Demetri GD, et al. Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol. 2003;21:976–83.

    Article  CAS  PubMed  Google Scholar 

  21. Smaglo BG, Aldeghaither D, Weiner LM. The development of immunoconjugates for targeted cancer therapy. Nat Rev Clin Oncol. 2014;11:637–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Verma S, Miles D, Gianni L, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367:1783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30:2183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Teicher BA, Chari RV. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res. 2011;17:6389–97.

    Article  CAS  PubMed  Google Scholar 

  25. Garralda E, Dienstmann R, Tabernero J. Pharmacokinetic/pharmacodynamic modeling for drug development in oncology. Am Soc Clin Oncol Educ Book. 2017;37:210–5.

    Article  PubMed  Google Scholar 

  26. LoRusso PM, Rudin CM, Reddy JC, et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res. 2011;17:2502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jain RK, Lee JJ, Hong D, et al. Phase I oncology studies: evidence that in the era of targeted therapies patients on lower doses do not fare worse. Clin Cancer Res. 2010;16:1289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sachs JR, Mayawala K, Gadamsetty S, et al. Optimal dosing for targeted therapies in oncology: drug development cases leading by example. Clin Cancer Res. 2016;22:1318–24.

    Article  CAS  PubMed  Google Scholar 

  29. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52–60.

    Article  CAS  PubMed  Google Scholar 

  30. Choi H, Charnsangavej C, Faria SC, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 2007;25:1753–9.

    Article  PubMed  Google Scholar 

  31. Van den Abbeele AD. The lessons of GIST–PET and PET/CT: a new paradigm for imaging. Oncologist. 2008;13(Suppl 2):8–13.

    Article  PubMed  Google Scholar 

  32. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.

    Article  CAS  PubMed  Google Scholar 

  33. Ileana Dumbrava E, Meric-Bernstam F, Yap TA. Challenges with biomarkers in cancer drug discovery and development. Expert Opin Drug Discov. 2018;13:685–90.

    Article  CAS  PubMed  Google Scholar 

  34. Shaw AT, Kim DW, Mehra R, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370:1189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chin L, Gray JW. Translating insights from the cancer genome into clinical practice. Nature. 2008;452:553–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Drilon A, Siena S, Ou SI, et al. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017;7:400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378:731–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Drilon A, Nagasubramanian R, Blake JF, et al. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov. 2017;7:963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. 1910;3:1–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105–16.

    Article  CAS  PubMed  Google Scholar 

  41. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gandhi L, Rodriguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378:2078–92.

    Article  CAS  PubMed  Google Scholar 

  45. Kaufman HL, Russell J, Hamid O, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17:1374–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kizhedath A, Wilkinson S, Glassey J. Applicability of predictive toxicology methods for monoclonal antibody therapeutics: status Quo and scope. Arch Toxicol. 2017;91:1595–612.

    Article  CAS  PubMed  Google Scholar 

  47. Suntharalingam G, Perry MR, Ward S, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355:1018–28.

    Article  CAS  PubMed  Google Scholar 

  48. Patnaik A, Kang SP, Rasco D, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015;21:4286–93.

    Article  CAS  PubMed  Google Scholar 

  49. Ahamadi M, Freshwater T, Prohn M, et al. Model-based characterization of the pharmacokinetics of pembrolizumab: a humanized anti-PD-1 monoclonal antibody in advanced solid tumors. CPT Pharmacometrics Syst Pharmacol. 2017;6:49–57.

    Article  CAS  PubMed  Google Scholar 

  50. Freshwater T, Kondic A, Ahamadi M, et al. Evaluation of dosing strategy for pembrolizumab for oncology indications. J Immunother Cancer. 2017;5:43.

    Article  PubMed  PubMed Central  Google Scholar 

  51. McDermott D, Lebbe C, Hodi FS, et al. Durable benefit and the potential for long-term survival with immunotherapy in advanced melanoma. Cancer Treat Rev. 2014;40:1056–64.

    Article  PubMed  Google Scholar 

  52. Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139–48.

    Article  CAS  PubMed  Google Scholar 

  53. Weber JS, Kahler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30:2691–7.

    Article  CAS  PubMed  Google Scholar 

  54. Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer. 2017;5:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Melero I, Hervas-Stubbs S, Glennie M, et al. Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer. 2007;7:95–106.

    Article  CAS  PubMed  Google Scholar 

  56. Dempke WCM, Fenchel K, Uciechowski P, Dale SP. Second- and third-generation drugs for immuno-oncology treatment-The more the better? Eur J Cancer. 2017;74:55–72.

    Article  CAS  PubMed  Google Scholar 

  57. Garant A, Guilbault C, Ekmekjian T, et al. Concomitant use of corticosteroids and immune checkpoint inhibitors in patients with hematologic or solid neoplasms: a systematic review. Crit Rev Oncol Hematol. 2017;120:86–92.

    Article  CAS  PubMed  Google Scholar 

  58. Donia M, Kimper-Karl ML, Hoyer KL, et al. The majority of patients with metastatic melanoma are not represented in pivotal phase III immunotherapy trials. Eur J Cancer. 2017;74:89–95.

    Article  PubMed  Google Scholar 

  59. Sun R, Champiat S, Dercle L, et al. Baseline lymphopenia should not be used as exclusion criteria in early clinical trials investigating immune checkpoint blockers (PD-1/PD-L1 inhibitors). Eur J Cancer. 2017;84:202–11.

    Article  CAS  PubMed  Google Scholar 

  60. Wolchok JD, Hoos A, O’Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–20.

    Article  CAS  PubMed  Google Scholar 

  61. Bohnsack OHA, Ludajic K. Adaptation of the immune-related response criteria: irRECIST. Ann Oncol. 2014;25(Suppl 4):iv361–72.

    Google Scholar 

  62. Flaherty KT, Hennig M, Lee SJ, et al. Surrogate endpoints for overall survival in metastatic melanoma: a meta-analysis of randomised controlled trials. Lancet Oncol. 2014;15:297–304.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hoos A, Eggermont AM, Janetzki S, et al. Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst. 2010;102:1388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Emens LA, Ascierto PA, Darcy PK, et al. Cancer immunotherapy: opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer. 2017;81:116–29.

    Article  CAS  PubMed  Google Scholar 

  66. Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.

    Article  CAS  PubMed  Google Scholar 

  67. Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dudley JC, Lin MT, Le DT, Eshleman JR. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res. 2016;22:813–20.

    Article  CAS  PubMed  Google Scholar 

  71. Udall M, Rizzo M, Kenny J, et al. PD-L1 diagnostic tests: a systematic literature review of scoring algorithms and test-validation metrics. Diagn Pathol. 2018;13:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kulangara K, Zhang N, Corigliano E, et al. Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch Pathol Lab Med. 2018.

    Google Scholar 

  73. Fashoyin-Aje L, Donoghue M, Chen H, et al. FDA approval summary: pembrolizumab for recurrent locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma expressing PD-L1. Oncologist. 2018.

    Google Scholar 

  74. Howitt BE, Shukla SA, Sholl LM, et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 2015;1:1319–23.

    Article  PubMed  Google Scholar 

  75. Kawakami H, Zaanan A, Sinicrope FA. Microsatellite instability testing and its role in the management of colorectal cancer. Curr Treat Options Oncol. 2015;16:30.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lemery S, Keegan P, Pazdur R. First FDA approval agnostic of cancer site – when a biomarker defines the indication. N Engl J Med. 2017;377:1409–12.

    Article  PubMed  Google Scholar 

  77. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8.

    Article  CAS  PubMed  Google Scholar 

  78. Tronick E, Hunter RG. Waddington, dynamic systems, and epigenetics. Front Behav Neurosci. 2016;10:107.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Felsenfeld G. A brief history of epigenetics. Cold Spring Harb Perspect Biol. 2014;6.

    Google Scholar 

  80. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  81. Gibbons RJ, Higgs DR. Molecular-clinical spectrum of the ATR-X syndrome. Am J Med Genet. 2000;97:204–12.

    Article  CAS  PubMed  Google Scholar 

  82. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.

    Article  CAS  PubMed  Google Scholar 

  83. Choudhuri S. From Waddington’s epigenetic landscape to small noncoding RNA: some important milestones in the history of epigenetics research. Toxicol Mech Methods. 2011;21:252–74.

    Article  CAS  PubMed  Google Scholar 

  84. Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet. 2012;13:679–92.

    Article  CAS  PubMed  Google Scholar 

  85. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28.

    Article  CAS  PubMed  Google Scholar 

  86. Esteller M. Cancer, epigenetics and the Nobel Prizes. Mol Oncol. 2012;6:565–6.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980;20:85–93.

    Article  CAS  PubMed  Google Scholar 

  88. Mair B, Kubicek S, Nijman SM. Exploiting epigenetic vulnerabilities for cancer therapeutics. Trends Pharmacol Sci. 2014;35:136–45.

    Article  CAS  PubMed  Google Scholar 

  89. Mann BS, Johnson JR, Cohen MH, et al. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007;12:1247–52.

    Article  CAS  PubMed  Google Scholar 

  90. Morel D, Almouzni G, Soria JC, Postel-Vinay S. Targeting chromatin defects in selected solid tumors based on oncogene addiction, synthetic lethality and epigenetic antagonism. Ann Oncol. 2017;28:254–69.

    Article  CAS  PubMed  Google Scholar 

  91. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–84.

    Article  CAS  PubMed  Google Scholar 

  92. Barros-Silva D, Marques CJ, Henrique R, Jeronimo C. Profiling DNA methylation based on next-generation sequencing approaches: new insights and clinical applications. Genes (Basel) 2018;9.

    Google Scholar 

  93. Nolan L, Johnson PW, Ganesan A, et al. Will histone deacetylase inhibitors require combination with other agents to fulfil their therapeutic potential? Br J Cancer. 2008;99:689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Thurn KT, Thomas S, Moore A, Munster PN. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol. 2011;7:263–83.

    Article  CAS  PubMed  Google Scholar 

  95. Fantin VR, Richon VM. Mechanisms of resistance to histone deacetylase inhibitors and their therapeutic implications. Clin Cancer Res. 2007;13:7237–42.

    Article  CAS  PubMed  Google Scholar 

  96. Lorincz AT. The promise and the problems of epigenetics biomarkers in cancer. Expert Opin Med Diagn. 2011;5:375–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Banerji U, Workman P. Critical parameters in targeted drug development: the pharmacological audit trail. Semin Oncol. 2016;43:436–45.

    Article  CAS  PubMed  Google Scholar 

  98. Martin-Liberal J, Ochoa de Olza M, Hierro C, et al. The expanding role of immunotherapy. Cancer Treat Rev. 2017;54:74–86.

    Article  CAS  PubMed  Google Scholar 

  99. Day D, Siu LL. Approaches to modernize the combination drug development paradigm. Genome Med. 2016;8:115.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Rodon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hierro, C., Rodon, J. (2020). Paradigms in Cancer Drug Development: A Universe with Many Galaxies. In: Yap, T.A., Rodon, J., Hong, D.S. (eds) Phase I Oncology Drug Development. Springer, Cham. https://doi.org/10.1007/978-3-030-47682-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47682-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47681-6

  • Online ISBN: 978-3-030-47682-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics