Skip to main content

Pharmacokinetic Considerations for Organ Dysfunction Clinical Trials in Early Drug Development

  • Chapter
  • First Online:
Phase I Oncology Drug Development
  • 608 Accesses

Abstract

It is not infrequent that patients with different cancers are affected by bodily organ dysfunction. Factors such as comorbidities, prior anticancer therapies and tumor-related issues are frequent causes of organ impairment. Since patients with bodily organ dysfunction are not frequently enrolled in conventional clinical trials due to standard study eligibility criteria, such patients are placed at a disadvantage in receiving appropriate anticancer treatment. Renal and hepatic impairment may also have potential detrimental effects on the pharmacokinetic profile of drugs, with subsequent implications for both safety and efficacy.

Renal function can be classified into 5 categories (normal, mild, moderate, severe and end-stage renal dysfunction), but the main classifications used (FDA, EMA and NCI-ODWG, KIDGO) currently have different cutoffs for each group, and also differ in their methods for calculating the eGFR. Renal impairment can be a consequence of damage through a range of mechanisms (glomerular filtration, tubular secretion, tubular absorption, and renal metabolism), likely differently affecting not only the excretion of drugs, but also other parameters such as absorption, distribution, protein binding, metabolism and excretion (ADME) of drugs even in those with low renal clearance.

Conversely, hepatic impairment is frequently classified as mild, moderate and severe. In oncology, the two most commonly used classifications are the Child-Pugh and NCI-ODWG scores. Both scores use objective variables that are easily measurable laboratory parameters (e.g. total bilirubin, prothrombin time, albumin and ALT/AST). Nevertheless, the Child-Pugh score also includes clinical variables including encephalopathy and ascites, which may not always accurately represent the severity of liver function in patients with different cancers. The severity of hepatic impairment varies between highly hepatic extracted drugs (EH > 7), blood flow-limited, intermediate (EH < 7–EH > 3) and low extracted drugs (EH < 3). Furthermore, hepatic impairment is also associated with variable and non-uniform reductions in CYP450 enzymes activity and changes in unbound drug, which also affect the disposition and exposure of drugs.

Understanding the degree of severity of organ dysfunction and the underlying responsible mechanisms, as well as the impact on pharmacokinetics are key challenges in patients with renal and hepatic impairment, which should be assessed in early phase clinical trials if appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;389:1238–52.

    PubMed  Google Scholar 

  2. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A; Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007;11(2): R31. PubMed PMID: 17331245; PubMed Central PMCID: PMC2206446.

    Google Scholar 

  3. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2017;7:1–59.

    Google Scholar 

  4. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callagan CA, Lasserson DS, et al. Global prevalence of Chronic Kidney Disease. A systematic review and meta-analysis. PLoS One. 2016, July 6; 11(7) e0158765. https://doi.org/10.1371/journal.pone.0158765. eCollection 2016.

  5. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global burden of disease study 2013. Lancet. 2015 Aug 22;386(9995):743–800. https://doi.org/10.1016/S0140-6736(15)60692-4. Epub 2015 Jun 7. Review.

  6. Neugarten J, Acharya A, Sibiger SR. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol. 2000;11(2):319–29.

    CAS  PubMed  Google Scholar 

  7. Samuels J, Ng CS, Nates J, Price K, Finkel K, Salahudeen A, et al. Small increases in serum creatinine are associated with prolonged ICU stay and increased hospital mortality in critically ill patients with cancer. Support Care Cancer. 2011;19(10):1527–32.

    PubMed  Google Scholar 

  8. Janssen-Heijnen ML, Maas HA, Houteman S, Lemmens VE, Rutten HJ, Coeberg JW. Comorbidity in older surgical cancer patients: influence on patient care and outcome. Eur J Cancer. 2007;43(15):2179–93.

    PubMed  Google Scholar 

  9. Saillard C, et al. Acute kidney injury in patients with cancer. N Engl J Med. 2017 Aug 3;377(5):499.

    PubMed  Google Scholar 

  10. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic renal disease: global dimension and perspectives. Lancet. 2013 Jul 20;382:260–72.

    PubMed  Google Scholar 

  11. Avarbock AB, et al. Lethal vascular leak syndrome after denileukin diftitox administration to a patient with cutaneous gamma/delta T-cell lymphoma and occult cirrhosis. Am J Hematol. 2008;83:593–5.

    CAS  PubMed  Google Scholar 

  12. Sahni V, Choudhury D, Ahmed Z. Chemotherapy-associated renal dysfunction. Nat Rev Nephrol. 2009;5(8):450–62.

    CAS  PubMed  Google Scholar 

  13. Eremina V, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Usui J, et al. Clinicopathological spectrum of kidney diseases in cancer patients treated with vascular endothelial growth factor inhibitors: a report of 5 cases and review of literature. Hum Pathol. 2014;45:1918–27.

    CAS  PubMed  Google Scholar 

  15. Rosner M, et al. Acute kidney injury in patients with cancer. NEJM. 2017;376(18):1770–81.

    CAS  PubMed  Google Scholar 

  16. Glezerman IG, Edgar A. Jaimes. Chapter 11: chemotherapy and kidney injury. American Society of Nephrology 2016. https://www.asn-online.org/education/distancelearning/curricula/onco/Chapter11.pdf

  17. Markowitz GS, et al. Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. J Am Soc Nephrol. 2001;12(6):1164–72.

    CAS  PubMed  Google Scholar 

  18. Stokes MB, et al. Glomerular disease related to anti-VEGF therapy. Kidney Int. 2008 Dec;74(11):1487–91.

    CAS  PubMed  Google Scholar 

  19. Kumasaka R, et al. Side effects of the therapy: case 1. Nephrotic syndrome associated with gefitinib therapy. J Clin Oncol. 2004 Jun 15;22(12):2504–5.

    PubMed  Google Scholar 

  20. Glezerman IG, Pietanza MC, Miller V, Seshan SV. Kidney tubular toxicity of maintenance pemetrexed therapy. Am J Kidney Dis. 2011 Nov;58(5):817–20.

    CAS  PubMed  Google Scholar 

  21. Markowitz GS, Fine PL, Stack J, Kunis CL, Radharisshnan J, Palecki W, et al. Toxic acute tubular necrosis following treatment with zoledronate (Zometa). Kidney Int. 2003;64(1):281–9.

    CAS  PubMed  Google Scholar 

  22. Izzedine H, et al. Acute tubular necrosis associated with mTOR inhibitor therapy: a real entity biopsy proven. Ann Oncol. 2013;24:2421–5.

    CAS  PubMed  Google Scholar 

  23. Wanchoo R, et al. Renal effects of BRAF inhibitors: a systematic review by the Cancer and the Kidney International Network. Clin Kidney J. 2016;9(2):245–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Izzedine H, El-Fekih RK, Perazella MA. The renal effects of ALK inhibitors. Investig New Drugs. 2016;34:643–9.

    CAS  Google Scholar 

  25. Ciarimboli G, et al. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol. 2005;167:1477–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zamlauski-Tucker MJ, et al. Ifosfamide metabolite chloroacetaldehyde causes Fanconi syndrome in the perfused rat kidney. Toxicol Appl Pharmacol. 1994;129:170–5.

    CAS  PubMed  Google Scholar 

  27. Ciarimboli G, et al. New clues for nephrotoxicity induced by ifosfamide: preferential renal uptake via the human organic cation transporter 2. Mol Pharm. 2011;8:270–9.

    CAS  PubMed  Google Scholar 

  28. Dietrich A, et al. Renal TRPathies. J Am Soc Nephrol. 2010;21:736–44.

    CAS  PubMed  Google Scholar 

  29. Schrag D, et al. Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst. 2005;97:1221–4.

    CAS  PubMed  Google Scholar 

  30. Muallem S, Moe OW. When eGF is offside, magnesium is wasted. J Clin Invest. 2007;117:2086–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. van Cutsem E, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007;25:1658–64.

    PubMed  Google Scholar 

  32. Fung E, Anand S, Bhalla V. Pemetrexed-induced nephrogenic diabetes insipidus. Am J Kidney Dis. 2016 October;68(4):628–32.

    PubMed  PubMed Central  Google Scholar 

  33. Bressler RB, Huston DP. Water intoxication following moderate dose intravenous cyclophosphamide. Arch Intern Med. 1985;145:548–9.

    CAS  PubMed  Google Scholar 

  34. Cutting HO. Inappropriate secretion of antidiuretic hormone secondary to vincristine therapy. Am J Med. 1971;51(2):269–71.

    CAS  PubMed  Google Scholar 

  35. Azar I. Sunitinib-induced acute interstitial nephritis in a thrombocytopenic renal cell cancer patient. Case Rep Oncol Med. 2017;2017:6328204.

    PubMed  PubMed Central  Google Scholar 

  36. Perazella MA. Onco-nephrology: renal toxicities of chemotherapeutic agents. Clin J Am Soc Nephrol. 2012;7(10):1713–21.

    CAS  PubMed  Google Scholar 

  37. Izzedine H, et al. Kidney injuries related to ipilimumab. Investig New Drugs. 2014 Aug;32:769–73.

    CAS  Google Scholar 

  38. Cortazar FB, et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int. 2016;90:638–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shirali AC, et al. Association of acute interstitial nephritis with programmed cell death 1 inhibitor therapy in lung cancer patients. Am J Kidney Dis. 2016;68:287–91.

    CAS  PubMed  Google Scholar 

  40. Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist. 2006;11:694–703.

    CAS  PubMed  Google Scholar 

  41. Perazella MA. Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol. 2009;4(7):1275–83.

    CAS  PubMed  Google Scholar 

  42. Choudhury D, Ahmed Z. Drug-associated renal dysfunction and injury. Nat Clin Pract Nephrol. 2006;2(2):80–91.

    CAS  PubMed  Google Scholar 

  43. Humphreys BD, Siffer RJ, Magee CC. Renal failure associated with cancer and its treatment: an update. J Am Soc Nephrol. 2005;16(1):151–61.

    PubMed  Google Scholar 

  44. Perazella MA, Moeckel GW. Nephrotoxicity from chemotherapeutic agents: clinical manifestations, pathobiology, and prevention/therapy. Semin Nephrol. 2010 Nov;30(6):570–81.

    CAS  PubMed  Google Scholar 

  45. Pabla N, et al. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008 May;73(9):994–1007.

    CAS  PubMed  Google Scholar 

  46. Kawai Y, et al. Relationship of intracellular calcium and oxygen radicals to Cisplatin-related renal cell injury. J Pharmacol Sci. 2006;100:65–72.

    CAS  PubMed  Google Scholar 

  47. Ramesh G, Reeves WB. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am J Physiol Renal Physiol. 2003;285:F610–8.

    CAS  PubMed  Google Scholar 

  48. Faubel S, et al. Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis. Kidney Int. 2004 Dec;66(6):2202–13.

    CAS  PubMed  Google Scholar 

  49. Hutchens MP, et al. Estrogen protects renal endothelial barrier function from ischemia-reperfusion in vitro and in vivo. Am J Physiol Renal. 2012;303:F377–85.

    CAS  Google Scholar 

  50. Nolin TD, et al. Emerging evidence of the impact of kidney disease on drug metabolism and transport. Clin Pharmacol Ther. 2008;83:898–903.

    CAS  PubMed  Google Scholar 

  51. Sun H, et al. Effects of renal failure on drug transport and metabolism. Pharmacol Ther 2006 Jan;109(1–2):1–11. Epub 2005 Aug 8.

    Google Scholar 

  52. Zhang Y, Zhang L, Abraham S, Apparaju S, Wu TC, Strong JM, et al. Assessment of the impact of renal impairment on systemic exposure of new molecular entities: evaluation of recent new drug applications. Clin Pharmacol Ther. 2009;85(3):305–11.

    CAS  PubMed  Google Scholar 

  53. Matzke GR, Comstock TJ. Influence of renal function and dialysis on drug disposition. In: Burton ME, Shaw LM, Schentag JJ, Evans WE, editors. Applied pharmacokinetics and pharmacodynamics: principles of therapeutic drug monitoring. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 187–212.

    Google Scholar 

  54. Schwartz GJ, Furth SL. Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol. 2007;22(11):1839–48.

    PubMed  Google Scholar 

  55. Sandilands EA, Dhaun N, Dear JW, Webb DJ. Measurement of renal function in patients with chronic kidney disease. Br J Clin Pharmacol. 2013;76(4):504–15.

    PubMed  PubMed Central  Google Scholar 

  56. Perrone RD, Steinman TI, Beck GJ, Skibinski CI, Royal HD, Lawlor M, et al. Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. Am J Kidney Dis. 1990;16(3):224–35.

    CAS  PubMed  Google Scholar 

  57. Gaspari F, Perico N, Matalone M, Signorini O, Azzollini N, Mister M, et al. Precision of plasma clearance of iohexol for estimation of GFR in patients with renal disease. J Am Soc Nephrol. 1998;9(2):310–3.

    CAS  PubMed  Google Scholar 

  58. Levey AS, Greene T, Schluchter MD, Cleary PA, Teschan PE, Lorenz RA, et al. Glomerular filtration rate measurements in clinical trials: modification of diet in renal disease study group and the diabetes control and complications trial research group. J Am Soc Nephrol. 1993;4(5):1159–71.

    CAS  PubMed  Google Scholar 

  59. Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function-measured and estimated glomerular filtration rate. NEJM. 2006;354(23):2473–83.

    CAS  PubMed  Google Scholar 

  60. Gross A, et al. Simultaneous administration of a cocktail of markers to measure renal drug elimination pathways: absence of a pharmacokinetic interaction between Fluconazole and sinistrin, p-aminohippuric acidand pindolol. J Clin Pharmacol. 2001;51:547–55.

    CAS  Google Scholar 

  61. Deutz NE, Safar A, Schutzler S, Memelink R, Ferrando A, Spencer H, et al. Muscle protein synthesis in cancer patients can be stimulated with a specially formulated medical food. Clin Nutr. 2011 December;30(6):759–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. De Campos-Ferraz, et al. An overview of amines as nutritional supplements to counteract cancer cachexia. J Cachexia Sarcopenia Muscle. 2014;5(2):105–10.

    PubMed  PubMed Central  Google Scholar 

  63. O’Callagan CA, Shine B, Lasserson DS. Chronic kidney disease: a large-scale population-based study of the effects of introducing the CKD-EPI formula for eGFR reporting. BMJ Open. 2011;1(2):e000308. https://doi.org/10.1136/bmjopen-2011-000308.

    Article  Google Scholar 

  64. Murata K, Baumann NA, Saenger AK, Larson TS, Rule AD, Lieske JC. Relative performance of the MDRD and CKD-EPI equations for estimating glomerular filtration rate among patients with varied clinical presentations. Clin J Am Soc Nephrol. 2011;6(8):1963–72.

    PubMed  PubMed Central  Google Scholar 

  65. 17 December 2015 EMA/CHMP/83874/2014 Committee for Medicinal Products for Human use (CHMP). Guideline on the evaluation of the pharmacokinetics of medicinal products in patients with decreased renal function. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-evaluation-pharmacokinetics-medicinal-products-patients-decreased-renal-function_en.pdf

  66. Tett SE, Kirkpatrick CM, Gross AS, McLachlan AJ. Principles and clinical application of assessing alterations in renal elimination pathways. Clin Pharmacokinet. 2003;42(14):1193–211.

    PubMed  Google Scholar 

  67. Beumer JH, Ding F, Tawbi H, Lin Y, Viluh D, Chatterjee I, et al. Effect of renal dysfunction on toxicity in three decades of cancer therapy evaluation program–sponsored single-agent phase I studies. J Clin Oncol. 2016;34(2):110–6.

    CAS  PubMed  Google Scholar 

  68. Field KM, Dow C, Michael M. Part I: Liver function in oncology: biochemistry and beyond. Lancet Oncol. 2008;9(11):1092–101.

    CAS  PubMed  Google Scholar 

  69. Mansfield AS, Rudeck MA, Vulih D, Smith GL, Jo HP, Percy IS. The effect of hepatic impairment on outcomes in phase 1 clinical trials in cancer subjects. Clin Cancer Res. 2016;22(22):5472–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hope VD, Eramova I, Capurro D, Donoghoe MC. Prevalence and estimation of hepatitis B and C infections in the WHO European Region: a review of data focusing on the countries outside the European Union and the European Free Trade Association. Epidemiol Infect. 2014;142(2):270–86.

    CAS  PubMed  Google Scholar 

  71. European Association for the Study of Liver. EASL clinical practical guidelines: management of alcoholic liver disease. J Hepatol 2012 Aug; 57(399–420).

    Google Scholar 

  72. Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34(3):274–85.

    CAS  PubMed  Google Scholar 

  73. Villano JL, et al. Abraxane induced life-threatening toxicities with metastatic breast cancer and hepatic insufficiency. Investig New Drugs. 2006;24:455–6.

    Google Scholar 

  74. Hill JM, Loeb E, MacLellan A, Hill NO, Khan A, King JJ. Clinical studies of platinum coordination compounds in the treatment of various malignant diseases. Cancer Chemother Rep. 1975;59:647–59.

    CAS  PubMed  Google Scholar 

  75. Mando OG. Imatinib-induced fatal acute liver failure. World J Gastroenterol. 2007;13:6608–11.

    PubMed  PubMed Central  Google Scholar 

  76. Mindikoglu AL, Regev A, Bejarano PA, Martinez EJ, Jeffers LJ, Schiff ER. Imatinib mesylate (gleevec) hepatotoxicity. Dig Dis Sci. 2007;52:598–601.

    PubMed  Google Scholar 

  77. Slavin RE, Dias MA, Saral R. Cytosine arabinoside induced gastrointestinal toxic alterations in sequential chemotherapeutic protocols: a clinical-pathologic study of 33 patients. Cancer. 1978;42:1747–59.

    CAS  PubMed  Google Scholar 

  78. Robinson K, Lambiase L, Li J, Monteiro C, Schiff M. Fatal cholestatic liver failure associated with gemcitabine therapy. Dig Dis Sci. 2003;48:1804–8.

    PubMed  Google Scholar 

  79. Tran A, Housset C, Boboc B, Tourani JM, Carnot F, Berthelot P. Etoposide (VP 16-213) induced hepatitis. Report of three cases following standard-dose treatment. J Hepatol. 1991;12(1):36–9.

    CAS  PubMed  Google Scholar 

  80. Asbury RF, Rosenthal SN, Descalzi ME, Ratcliffe RL, Arseneau JC. Hepatic veno-occlusive disease due to DTIC. Cancer. 1980;45:2670–4.

    CAS  PubMed  Google Scholar 

  81. Friedman HS, et al Chapter 13 Nonclassic alkylating agents. Cancer chemotherapy and biotherapy Second edition 1996 edited by Bruce A. Chabner and Dan L. Longo. Pages 333–356 (DTIC).

    Google Scholar 

  82. Scheithauer W, McKendrick J, Begbie S, et al. Oral capecitabine as an alternative to iv 5-fluorouracil-based adjuvant therapy for colon cancer: safety results of a randomized, phase III trial. Ann Oncol. 2003;14:1735–43.

    CAS  PubMed  Google Scholar 

  83. Van Cutsem E, Twelves C, Cassidy J, et al. Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: results of a large phase III study. J Clin Oncol. 2001;19:4097–106.

    PubMed  Google Scholar 

  84. Chu E, Allegra CJ. Chapter 6 Antifolates. Cancer chemotherapy and biotherapy. Second edition 1996 edited by Bruce A. Chabner and Dan L. Longo pages 109–148 (methotrexate).

    Google Scholar 

  85. Morris-Stiff G, Tan YM, Vauthey JN. Hepatic complications following preoperative chemotherapy with oxaliplatin or irinotecan for hepatic colorectal metastases. Eur J Surg Oncol. 2008;34:609–14.

    CAS  PubMed  Google Scholar 

  86. Doroshow JH, et al. Pharmacology of oxaliplatin in solid tumor patients with hepatic dysfunction: a preliminary report of the national cancer institute working group. Sem Oncol. 2003a Aug;30(4 suppl 15):14–9.

    CAS  Google Scholar 

  87. Doroshow JH, Synold TW, Gandara D, et al. Pharmacology of oxaliplatin in solid tumor patients with hepatic dysfunction: a preliminary report of the National Cancer Institute Organ Dysfunction Working Group. Semin Oncol. 2003b;30(suppl 15):14–9.

    CAS  PubMed  Google Scholar 

  88. Rubbia-Brandt L, Audard V, Sartoretti P, et al. Severe hepatic sinusoidal obstruction associated with oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Ann Oncol. 2004;15:460–6.

    CAS  PubMed  Google Scholar 

  89. Vauthey JN, Pawlik TM, Ribero D, et al. Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol. 2006;24:2065–72.

    CAS  PubMed  Google Scholar 

  90. Iorga A, Dara L, Kaplowitz N. A drug-induced liver injury: cascade of events leading to cell death, apoptosis or necrosis. Int J Mol Sci. 2017;18(5). pii: E1018.

    Google Scholar 

  91. Suzuki A, Takahashi T, Okuno Y, Seko S, Fukuda Y, Nakamura K, et al. Liver damage in patients with colony-stimulating factor-producing tumors. Am J Med. 1993;94(2):125–32.

    CAS  PubMed  Google Scholar 

  92. Rivory LP, Slaviero KA, Clarke SJ. Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response. Br J Cancer. 2002;87(3):277–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Petrovic V, Teng S, Piquette-Miller M. Regulation of drug transporters during infection and inflammation. Mol Interv. 2007;7(2):99–111.

    CAS  PubMed  Google Scholar 

  94. Le Couteur DG, Fraser R, Hilmer S, Rivory LP, McLean AJ. The hepatic sinusoid in aging and cirrhosis: effects on hepatic substrate disposition and drug clearance. Clin Pharmacokinet. 2005;44(2):187–200.

    PubMed  Google Scholar 

  95. Hung DY, Chang P, Cheung K, McWhinney B, Masci PP, Weiss M, et al. Cationic drug pharmacokinetics in diseased livers determined by fibrosis index, hepatic protein content, microsomal activity, and nature of drug. Pharmacol Exp Ther. 2002;301(3):1079–87.

    CAS  Google Scholar 

  96. George J, Murray M, Byth K, Farrell GC. Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease. Hepatology. 1995a;21(1):120–8.

    CAS  PubMed  Google Scholar 

  97. George J, Liddle C, Murray M, Byth K, Farrell GC. Pre-translational regulation of cytochrome P450 genes is responsible for disease specific changes of individual P450 enzymes among patients with cirrhosis. Biochem Pharmacol. 1995b;49(7):873–81.

    CAS  PubMed  Google Scholar 

  98. Furlan V, Demirdjian S, Bourdon O, Magdalou J, Taburet AM. Glucuronidation of drugs by hepatic microsomes derived from healthy and cirrhotic human livers. J Pharmacol Exp Ther. 1999 May;289(2):1169–75.

    CAS  PubMed  Google Scholar 

  99. Elbekai RH, Korashy HM, El-Kadi OS. The effect of liver cirrhosis on the regulation and expression of drug metabolising enzymes. Curr Drug Metab. 2004 Apr;5(2):157–67.

    CAS  PubMed  Google Scholar 

  100. Kullak-Ublick GA, Beuers U, Paumgartner G. Molecular and functional characterization of bile acid transport in human hepatoblastoma Hep G2 cells. Hepatology. 1996 May;23(5):1053–60.

    CAS  PubMed  Google Scholar 

  101. Briz O, Serrano MA, Rebollo N, Hangenbuch B, Meier PJ, Koepsell H, et al. Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinateplatinum (II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol Pharmacol. 2002 Apr;61(4):853–60.

    CAS  PubMed  Google Scholar 

  102. Figg WD, Dukes GE, Lesesne HR, Carson SW, Songer SS, Pritchard JF, et al. Comparison of quantitative methods to assess hepatic function: Pugh’s classification, indocyanine green, antipyrine, and dextromethorphan. Pharmacotherapy. 1995 Nov–Dec;15(6):693–700.

    CAS  PubMed  Google Scholar 

  103. Tang HS, Hu OY. Assessment of liver function using a novel galactose single point method. Digestion. 1992;52(3-4):222–31.

    CAS  PubMed  Google Scholar 

  104. Testa R, Caglieri S, Risso D, Arzani L, Campo N, Alvarez S, et al. Monoethylglycinexylidide formation measurement as a hepatic function test to assess severity of chronic liver disease. Am J Gastroenterol. 1997 Dec;92(12):2268–73.

    CAS  PubMed  Google Scholar 

  105. Faybik P, Hetz H. Plasma disappearance rate of indocyanine green in liver dysfunction. Transplant Proc. 2006 Apr;38(3):801–2.

    CAS  PubMed  Google Scholar 

  106. Molino G, Avagnina P, Belforte G, Bircher J. Assessment of the hepatic circulation in humans: new concepts based on evidence derived from a D-sorbitol clearance method. J Lab Clin Med. 1998;131(5):393–405.

    CAS  PubMed  Google Scholar 

  107. Engel G, Hofmann U, Heidemann H, Cosme J, Eichelbaum M. Antipyrine as a probe for human oxidative metabolism: identification of the cytochrome P50 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther. 1996 Jun;59:613–23.

    CAS  PubMed  Google Scholar 

  108. Villeneuve JP, Pichette P. Cytochrome P450 and liver diseases. Curr Drug Metab. 2004;5:273–5.

    CAS  PubMed  Google Scholar 

  109. Rogers JF, Rocci ML, Haughey DB, Bertino JS. An evaluation of the suitability of intravenous midazolam as an in vivo marker for hepatic cytochrome P4503A activity. Clin Pharmacol Ther. 2003 Mar;73(3):153–8.

    CAS  PubMed  Google Scholar 

  110. Oellerich M, Armstrong VW. The MEGX test: a tool for the real-time assessment of hepatic function. Ther Drug Monit. 2001 Apr;23(2):81–92.

    CAS  PubMed  Google Scholar 

  111. Orlando R, Piccoli P, De Martin S, Padrini R, Floreani M, Palatini P. Cytochrome P450 1A2 is a major determinant of lidocaine metabolism in vivo. Clin Pharmacol Ther. 2004 Jan;75(1):80–8.

    CAS  PubMed  Google Scholar 

  112. Durand F, Valla D. Assessment of the prognosis of cirrhosis: child–pugh versus MELD. J Hepatol. 2005;42(Suppl(1)):S100–7.

    PubMed  Google Scholar 

  113. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60:646–9.

    CAS  PubMed  Google Scholar 

  114. Fernandez-Esparrach G, Sanchez-Fuevo A, Ginès P, Uriz J, Quintó L, Ventura PJ, et al. A prognostic model for predicting survival in cirrhosis with ascites. J Hepatol. 2001;34(1):46–52.

    CAS  PubMed  Google Scholar 

  115. Longheval G, Vereerstraeten P, Thiry P, Delhaye M, Moine O, Deviere J, et al. Predictive models of short- and long-term survival in patients with nonbiliary cirrhosis. Liver Transpl. 2003;9(3):260–7.

    PubMed  Google Scholar 

  116. Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PC. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology. 2000;31(4):864–71.

    CAS  PubMed  Google Scholar 

  117. Wiesner RH, McDiarmid SV, Kamath PS, Edwards EB, Malinchoc M, Kremers WK, et al. MELD and PELD: application of survival models to liver allocation. Liver Transpl. 2001;7(7):567–80.

    CAS  PubMed  Google Scholar 

  118. Amitrano L, Guardascione MA, Bennato R, Manguso F, Balzano A. MELD score and hepatocellular carcinoma identify patients at different risk of short-term mortality among cirrhotics bleeding from esophageal varices. J Hepatol. 2005 Jun;42(6):820–5.

    PubMed  Google Scholar 

  119. Evans LT, Kim WR, Poterucha JJ, Kamath PS. Spontaneous bacterial peritonitis in asymptomatic outpatients with cirrhotic ascites. Hepatology. 2003 Apr;37(4):897–901.

    PubMed  Google Scholar 

  120. Schmidt LE, Larsen FS. MELD score as a predictor of liver failure and death in patients with acetaminophen-induced liver failure. Hepatology. 2007 Mar;45(3):789–96.

    CAS  PubMed  Google Scholar 

  121. Taylor RM, et al. Acute Liver Failure study Group. Fulminant hepatitis A virus infection in the United States: incidence, prognosis an outcomes. Hepatology. 2006;44:1589–97.

    CAS  PubMed  Google Scholar 

  122. Dunn W, et al. MELD accurately predicts mortality in patients with alcoholic hepatitis. Hepatology. 2005;41:353–8.

    PubMed  Google Scholar 

  123. Cholongitas E, Senzolo M, Patch D, Kwong K, Niolopoulou V, Leandro G, et al. Risk factors, sequential organ failure assessment and model for end-stage liver disease scores for predicting short-term mortality in cirrhotic patients admitted to intensive care unit. Aliment Pharmacol Ther. 2006 Apr 1;23(7):883–93.

    CAS  PubMed  Google Scholar 

  124. Csonka D, Hazell K, Waldron E, Lorenzo S, Duval V, Trandafir L, et al. Phase-1, open-label, single dose study of the pharmacokinetics of buparlisib in subjects with mild to severe hepatic impairment. J Clin Pharmacol. 2016;56(3):316–23.

    CAS  PubMed  Google Scholar 

  125. Miller AA, Murry DJ, Owzar K, Hollis DR, Lewis LD, Kindler HL, et al. Phase I and pharmacokinetic study of erlotinib for solid tumors in patients with hepatic or renal dysfunction: CALGB 60101. J Clin Oncol. 2007 Jul 20;25(21):3055–60.

    CAS  PubMed  Google Scholar 

  126. Siegel-Lakhai WS, Crul M, De Porre P, Zhang S, Chang I, Boot H, et al. Clinical and pharmacologic study of the farnesyltransferase inhibitor tipifarnib in cancer patients with normal or mildly or moderately impaired hepatic function. J Clin Oncol. 2006;24(28):4558–64.

    CAS  PubMed  Google Scholar 

  127. Yang HC, et al. Models of chronic kidney disease. Drug Discov Today Dis Models. 2010;7(1–2):13–9. https://doi.org/10.1016/j.ddmod.2010.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. CHMP/EWP/89249/2004 Guidelines on the clinical investigation of the pharmacokinetics of therapeutic proteins. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-investigation-pharmacokinetics-therapeutic-proteins_en.pdf

  129. Pharmacokinetics in Patients with Impaired Renal Function — Study Design, Data Analysis, and Impact on Dosing and Labeling U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) March 2010. Clin Pharmacol. https://www.fda.gov/media/78573/download

  130. Dobbs NA, Twelves CJ. Anthracycline doses in patients with liver dysfunction: do UK oncologists follow current recommendations? Br J Cancer. 1998;77(7):1145–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Arbuck SG, et al. Etoposide pharmacokinetics in patients with normal and abnormal organ function. JCO. 1986;4(11):1690–5.

    CAS  Google Scholar 

  132. D’Incalci M, et al. Pharmacokinetics of etoposide in patients with abnormal renal and hepatic function. CCR. 1986;46:2566–71.

    Google Scholar 

  133. Calvert AH, et al. Phase I studies with carboplatin at the Royal Marsden Hospital. Cancer Treat Rev. 1985 Sep;12(Suppl A):51–7.

    PubMed  Google Scholar 

  134. Tan AR, et al. Pharmacokinetics of eribulin mesylate in cancer patients with normal and impaired renal function. Cancer Chemother Pharmacol. 2015;76:1051–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Takimoto CH. Dose-escalating and pharmacological study of oxaliplatin in adult cancer patients with impaired renal function: a National Cancer Institute Organ Dysfunction Woeking Group study. J Clin Oncol. 2003 Jul 15;21(14):2664–72.

    CAS  PubMed  Google Scholar 

  136. Gibbons J, et al. Phase I and pharmacokinetic study of imatinib mesylate in patients with advanced malignancies and varying degrees of renal dysfunction: a study by the national cancer institute organ dysfunction working group. J Clin Oncol. 2008 Feb 1;26(4):570–6. https://doi.org/10.1200/JCO.2007.13.3819.

    Article  CAS  PubMed  Google Scholar 

  137. Marbury T, et al. Single-dose pharmacokinetic studies of abiraterone acetate in men with hepatic or renal impairment. J Clin Pharmacol. 2014;54(7):732–41.

    CAS  PubMed  Google Scholar 

  138. Synold TW, et al. Dose-escalating and pharmacologic study of oxaliplatin in adult cancer patients with impaired hepatic function: a national cancer institute organ dysfunction working group study. Clin Cancer Res. 2007;13:3660–6.

    CAS  PubMed  Google Scholar 

  139. Shibata SI, et al. Phase 1 study of pazopanib in patients with advanced solid tumors and hepatic dysfunction: a national cancer institute organ dysfunction working group study. Clin Cancer Res. 2013;19(13):3631–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Witteveen P, et al. Eribulin mesylate pharmacokinetics in patients with hepatic impairment. J Clin Oncol 2010 28:15_suppl, 2582. https://ascopubs.org/doi/abs/10.1200/jco.2010.28.15_suppl.2582

  141. Devriese LA, et al. Pharmacokinetics of eribulin mesylate in patients with solid tumors and hepatic impairment. Cancer Chemother Pharmacol 2012 Dec;70(6):823–32. https://doi.org/10.1007/s00280-012-1976-x. Epub 2012 Sep 26.

  142. Chunze Li C, et al. A phase I pharmacokinetic study of trastuzumab emtansine (T-DM1) in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer and normal or reduced hepatic function. Clin Pharmacokinet. 2017 Sep;56(9):1069–80. https://doi.org/10.1007/s40262-016-0496-y.

    Article  CAS  PubMed  Google Scholar 

  143. Tawbi HAH, et al. Early phase I study of the PARP inhibitor veliparib (ABT-888) alone or in combination with carboplatin/paclitaxel (CP) in patients with varying degrees of hepatic or renal dysfunction: a study of the NCI-Organ Dysfunction Working Group (ODG). JCO 2014;32(15) suppl 2572. https://ascopubs.org/doi/abs/10.1200/jco.2014.32.15_suppl.2572

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Analia Azaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azaro, A., Demirhan, M.E., Lim, J., Rodon, J. (2020). Pharmacokinetic Considerations for Organ Dysfunction Clinical Trials in Early Drug Development. In: Yap, T.A., Rodon, J., Hong, D.S. (eds) Phase I Oncology Drug Development. Springer, Cham. https://doi.org/10.1007/978-3-030-47682-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47682-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47681-6

  • Online ISBN: 978-3-030-47682-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics