Skip to main content

Introduction

  • Chapter
  • First Online:
Diameter-Transformed Fluidized Bed

Part of the book series: Particle Technology Series ((POTS,volume 27))

Abstract

This Chapter introduces the fundamentals of catalytic reaction engineering and complex gas-solid catalytic reactions as well as how the various reactors including fixed bed, moving bed and fluidized bed reactors being adapted to the complex heterogeneous reactions. It is found that it is fairly difficult to compromise the reaction conversion and the selectivity to the desired product employing the fluidized bed with a single reaction zone. A diameter-transformed fluidized bed (DTFB) reactor is then invented, in order to maximize the target reactions and inhibit/stop the undesired reactions by creating multiple reaction zones with different suitable reaction conditions in an engineering feasible way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagen, J.: Industrial Catalysis: A Practical Approach, 2nd edn. Wiley-VCH, Weinheim (2006)

    Google Scholar 

  2. Chen, S.Y.: Fundamentals of Catalytic Reaction Engineering. Chemical industry Press, Beijing (2011). (in Chinese)

    Google Scholar 

  3. Forment, F.G., Bischoff, K.B.: Chemical Reactor Analysis and Design. Wiley, New York (1979)

    Google Scholar 

  4. Fogler, H.S.: Elements of Chemical Reaction Engineering, 4th edn. Pearson Education, Inc, Upper Saddle River (2006)

    Google Scholar 

  5. McCabe, R.W., Mitchell, P.J.: Oxidation of ethanol and acetaldehyde over alumina-supported catalysts. Ind. Eng. Chem. Fundam. 22, 212–217 (1983)

    CAS  Google Scholar 

  6. Lapidus, L., Amundson, N.R. (eds.): Chemical Reactor Theory A Review. Prentice-Hall Inc., Englewood Cliff (1977)

    Google Scholar 

  7. Wilhelm, R.H., Kwauk, M.: Fluidization of solid particles. Chem. Eng. Prog. 44(3), 201–218 (1948)

    CAS  Google Scholar 

  8. Li, D.D., Nie, H., Sun, L. (eds.): Hydrotreating Process and Engineering, 2nd edn. China Petrochemical Press, Beijing (2016). (in Chinese)

    Google Scholar 

  9. Xu, C.E. (ed.): Catalytic Reforming Process and Engineering, 2nd edn. China Petrochemical Press, Beijing (2014). (in Chinese)

    Google Scholar 

  10. Kokayeff, P., Zink, S., Boxas, P.: Hydrotreating in petroleum processing. In: Treese, S., Pujadó, P., Jones, D. (eds.) Handbook of Petroleum Processing. Springer, Cham (2015)

    Google Scholar 

  11. Crowe, C.T. (ed.): Multiphase Flow Handbook. CRC Press, Boca Raton (2006)

    Google Scholar 

  12. Dudukovic, M.P.: Frontiers in reactor engineering. Science. 325(5941), 698–701 (2009)

    CAS  PubMed  Google Scholar 

  13. Kunii, D., Levenspiel, O.: Fluidization Engineering, 2nd edn. Butterworth-Heinemann, London (1991)

    Google Scholar 

  14. Kwauk, M.: In: Li, H.Z. (ed.) Fluidization Handbook. Chemical Industry Press, Beijing (2008). (in Chinese)

    Google Scholar 

  15. Kannan, C.S., Rao, S.S., Varma, Y.B.G.: A study of stable range of operation in multistage fluidised beds. Powder Technol. 78(3), 203–211 (1994)

    Google Scholar 

  16. Gascón, J., Téllez, C., Herguido, J., Menéndez, M.: Fluidized bed reactors with two-zones for maleic anhydride production: different configurations and effect of scale. Ind. Eng. Chem. Res. 44(24), 8945–8951 (2005)

    Google Scholar 

  17. Covezzi, M., Mei, G.: The multizone circulating reactor technology. Chem. Eng. Sci. 56(13), 4059–4067 (2001)

    CAS  Google Scholar 

  18. Gupta, A., Rao, D.S.: Model for the performance of a fluid catalytic cracking (FCC) riser reactor: effect of feed atomization. Chem. Eng. Sci. 56(15), 4489–4503 (2001)

    CAS  Google Scholar 

  19. Gupta, A., Rao, D.S.: Effect of feed atomization on FCC performance: simulation of entire unit. Chem. Eng. Sci. 58(20), 4567–4579 (2003)

    CAS  Google Scholar 

  20. Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., de Diego, L.F.: Progress in chemical-looping combustion and reforming technologies. Prog. Energy Combust. Sci. 38(2), 215–282 (2012)

    CAS  Google Scholar 

  21. Adánez, J., Gayán, P., Celaya, J., de Diego, L.F., García-Labiano, F., Abad, A.: Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier: effect of operating conditions on methane combustion. Ind. Eng. Chem. Fundam. 45(17), 6075–6080 (2006)

    Google Scholar 

  22. Kronberger, B., Johansson, E., Löffler, G., Mattisson, T., Lyngfelt, A., Hofbauer, H.: A two-compartment fluidized bed reactor for CO2 capture by chemical-looping combustion. Chem. Eng. Technol. 27(12), 1318–1326 (2004)

    CAS  Google Scholar 

  23. Lyngfelt, A., Leckner, B., Mattisson, T.: A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chem. Eng. Sci. 56(10), 3101–3113 (2001)

    CAS  Google Scholar 

  24. Zhou Y.F.: Realization control and stability analysis of multiple temperature zones in the liquid-containing gas-solid fluidized bed reactor. Doctoral thesis, Zhejiang University, Hangzhou, China (2014)

    Google Scholar 

  25. Marcilly, C.: Acido-Basic Catalysis: Application to Refining and Petrochemistry, vol. 2. Editions Technip, Paris (2006)

    Google Scholar 

  26. He, M.Y.: The development of catalytic cracking catalysts: acidic property related catalytic performance. Catal. Today. 73(1–2), 49–55 (2002)

    CAS  Google Scholar 

  27. He, M.Y.: Green Chemistry in Petroleum Refining and Synthesis of Basic Organic Chemicals. China Petrochemical Press, Beijing (2006). (in Chinese)

    Google Scholar 

  28. Xu, Y.H., Cui, S.Y.: A novel fluid catalytic cracking process for maximizing isoparaffins: from fundamentals to commercialization. Front. Chem. Sci. Eng. 12(1), 9–23 (2018)

    CAS  Google Scholar 

  29. Xu Y.H., Zhang J.S., Yang Y.N., Long J., Wang X.Q., Li Z.T., Zhang R.C.: Catalytic conversion process for producing isobutane and isoparaffin-enriched gasoline. USA, 2002, US 6,495,028 Bl

    Google Scholar 

  30. Xu, Y.H.: Chemistry and Process of Catalytic Cracking. Science Press, Beijing (2013). (in Chinese)

    Google Scholar 

  31. Merry, J.M.D.: Penetration of vertical jets into fluidized beds. AICHE J. 21, 507–510 (1975)

    CAS  Google Scholar 

  32. Knowlton, T.M., Hirsan, I.: The effect of pressure on jet penetration in semi-cylindrical gas-fluidized beds. In: Grace, J.R., Matsen, J.M. (eds.) Fluidization. Springer, Boston (1980)

    Google Scholar 

  33. Xu Y.H., Yu B.D., Zhang Z.G.: A riser reactor for fluidized catalytic conversion. China, 1999, ZL99105903.4

    Google Scholar 

  34. Xu Y.H., Yu B.D., Zhang Z.G., Long J., Jiang F.K.: Riser reactor for fluidized catalytic conversion. USA, 2010, US 7,678,342 Bl

    Google Scholar 

  35. Werther, J., Hartge, E.-U., Heinrich, S.: Fluidized-bed reactors – status and some development perspectives. Chem. Ing. Tech. 86, 2022–2038 (2014)

    CAS  Google Scholar 

  36. Li, J., Kwauk, M.: Paticle-Fluid Two-Phase Flow: The Energy-Minimization Multi-scale Method. Metallurgical Industry Press, Beijing (1994)

    Google Scholar 

  37. Li, J.: In: Kwauk, M. (ed.) Modeling, in Advances in Chemical Engineering, pp. 147–201. Academic (1994)

    Google Scholar 

  38. Lu, B., Wang, W., Li, J.: Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows. Chem. Eng. Sci. 64(15), 3437–3447 (2009)

    CAS  Google Scholar 

  39. Lu, B., Wang, W., Li, J.: Eulerian simulation of gas–solid flows with particles of Geldart groups A, B and D using EMMS-based meso-scale model. Chem. Eng. Sci. 66(20), 4624–4635 (2011)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhao Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, Y., He, M. (2020). Introduction. In: Diameter-Transformed Fluidized Bed. Particle Technology Series, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-47583-3_1

Download citation

Publish with us

Policies and ethics