Skip to main content

Abstract

This paper presents a comprehensive quantitative performance analysis of hybrid mesh segmentation algorithm. An important contribution of this proposed hybrid mesh segmentation algorithm is that it clusters facets using “facet area” as a novel mesh attribute. The method does not require to set any critical parameters for segmentation. The performance of the proposed algorithm is evaluated by comparing the proposed algorithm with the recently developed state-of-the-art algorithms in terms of coverage, time complexity, and accuracy. The experimentation results on various benchmark test cases demonstrate that Hybrid Mesh Segmentation approach does not depend on complex attributes, and outperforms the existing state-of-the-art algorithms. The simulation reveals that Hybrid Mesh Segmentation achieves a promising performance with coverage of more than 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rafibakhsh N, Campbell MI (2017) Hierarchical fuzzy primitive surface classification from tessellated solids for defining part-to-part removal directions. J Comput Inf Sci Eng 18:011006. https://doi.org/10.1115/1.4038144

    Article  Google Scholar 

  2. Gao S, Zhao W, Lin H, Yang F, Chen X (2010) Feature suppression based CAD mesh model simplification. Comput Des 42:1178–1188. https://doi.org/10.1016/j.cad.2010.05.010

    Google Scholar 

  3. Wang J, Yu Z (2011) Surface feature based mesh segmentation. Comput Graph 35:661–667. https://doi.org/10.1016/j.cag.2011.03.016

    Article  Google Scholar 

  4. Attene M, Falcidieno B, Spagnuolo M (2006) Hierarchical mesh segmentation based on fitting primitives. Vis Comput 22:181–193. https://doi.org/10.1007/s00371-006-0375-x

    Article  Google Scholar 

  5. Schnabel R, Wahl R, Klein R (2007) Efficient RANSAC for point-cloud shape detection. Comput Graph Forum 26:214–226. https://doi.org/10.1111/j.1467-8659.2007.01016.x

    Article  Google Scholar 

  6. Li Y, Wu X, Chrysathou Y, Sharf A, Cohen-Or D, Mitra NJ (2011) GlobFit: consistently fitting primitives by discovering global relations. In: ACM SIGGRAPH 2011 papers on - SIGGRAPH ’11. ACM Press, New York, p 1

    Google Scholar 

  7. Yan D-M, Wang W, Liu Y, Yang Z (2012) Variational mesh segmentation via quadric surface fitting. Comput Des 44:1072–1082. https://doi.org/10.1016/j.cad.2012.04.005

    Google Scholar 

  8. Adhikary N, Gurumoorthy B (2016) A slice based approach to recognize and extract free-form volumetric features in a CAD mesh model. Comput Aided Des Appl 13:587–599. https://doi.org/10.1080/16864360.2016.1150703

    Article  Google Scholar 

  9. Le T, Duan Y (2017) A primitive-based 3D segmentation algorithm for mechanical CAD models. Comput Aided Geom Des 52–53:231–246. https://doi.org/10.1016/j.cagd.2017.02.009

    Article  MathSciNet  Google Scholar 

  10. Shamir A (2004) A formulation of boundary mesh segmentation. In: Proceedings. 2nd international symposium on 3D data processing, visualization and transmission, 2004. 3DPVT 2004. IEEE, pp 82–89. https://doi.org/10.1109/TDPVT.2004.1335163

  11. Attene M, Katz S, Mortara M, Patane G, Spagnuolo M, Tal A (2006) Mesh segmentation - a comparative study. In: IEEE international conference on shape modeling and applications 2006 (SMI’06). IEEE, p 7. https://doi.org/10.1109/SMI.2006.24

  12. Agathos A, Pratikakis I, Perantonis S, Sapidis N, Azariadis P (2007) 3D mesh segmentation methodologies for CAD applications. Comput Aided Des Appl 4:827–841. https://doi.org/10.1080/16864360.2007.10738515

    Article  Google Scholar 

  13. Shamir A (2008) A survey on mesh segmentation techniques. Comput Graph Forum 27:1539–1556. https://doi.org/10.1111/j.1467-8659.2007.01103.x

    Article  Google Scholar 

  14. Chen X, Golovinskiy A, Funkhouser T (2009) A benchmark for 3D mesh segmentation. ACM Trans Graph 28:1. https://doi.org/10.1145/1531326.1531379

    Google Scholar 

  15. Theologou P, Pratikakis I, Theoharis T (2015) A comprehensive overview of methodologies and performance evaluation frameworks in 3D mesh segmentation. Comput Vis Image Underst 135:49–82. https://doi.org/10.1016/j.cviu.2014.12.008

    Article  Google Scholar 

  16. Sunil VB, Pande SS (2008) Automatic recognition of features from freeform surface CAD models. Comput Des 40:502–517. https://doi.org/10.1016/j.cad.2008.01.006

    Google Scholar 

  17. Xiao D, Lin H, Xian C, Gao S (2011) CAD mesh model segmentation by clustering. Comput Graph 35:685–691. https://doi.org/10.1016/j.cag.2011.03.020

    Article  Google Scholar 

  18. Jiao X, Bayyana NR (2008) Identification of and discontinuities for surface meshes in CAD. Comput Des 40:160–175. https://doi.org/10.1016/j.cad.2007.10.005

    Google Scholar 

  19. Di Angelo L, Di Stefano P, Morabito AE (2018) Secondary features segmentation from high-density tessellated surfaces. Int J Interact Des Manuf 12:801–809. https://doi.org/10.1007/s12008-017-0426-8

    Article  Google Scholar 

  20. Razdan A, Bae M (2003) A hybrid approach to feature segmentation of triangle meshes. Comput Des 35:783–789. https://doi.org/10.1016/S0010-4485(02)00101-X

    Google Scholar 

  21. Xú S, Anwer N, Mehdi-Souzani C, Harik R, Qiao L (2016) STEP-NC based reverse engineering of in-process model of NC simulation. Int J Adv Manuf Technol 86:3267–3288. https://doi.org/10.1007/s00170-016-8434-6

    Article  Google Scholar 

  22. Benkő P, Várady T (2004) Segmentation methods for smooth point regions of conventional engineering objects. Comput Des 36:511–523. https://doi.org/10.1016/S0010-4485(03)00159-3

  23. Huang J, Menq C-H (2001) Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points. IEEE Trans Robot Autom 17:268–279. https://doi.org/10.1109/70.938384

    Article  Google Scholar 

  24. Csákány P, Wallace AM (2000) Computation of local differential parameters on irregular meshes. In: Cipolla R, Martin R (eds) The mathematics of surfaces IX. Springer, London, pp 19–33. https://doi.org/10.1007/978-1-4471-0495-7_2

    Chapter  Google Scholar 

  25. Várady T, Facello MA, Terék Z (2007) Automatic extraction of surface structures in digital shape reconstruction. Comput Des 39:379–388. https://doi.org/10.1016/j.cad.2007.02.011

    MATH  Google Scholar 

  26. Peng YH, Gao CH, He BW (2008) Research on the relationship between triangle quality and discrete curvature. China Mech Eng 19:2459–2462, 2468

    Google Scholar 

  27. Peng Y, Chen Y, Huang B (2015) Region segmentation for STL triangular mesh of CAD object. Int J Sens Networks 19:62–68. https://doi.org/10.1504/ijsnet.2015.071383

    Article  Google Scholar 

  28. Hase V, Bhalerao Y, Verma S, Vikhe G (2019) Blend recognition from CAD mesh models using pattern matching. AIP Conf Proc 2148:030029. https://doi.org/10.1063/1.5123951

    Article  Google Scholar 

  29. Katz S, Tal A (2003) Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans Graph 22:954. https://doi.org/10.1145/882262.882369

    Article  Google Scholar 

  30. Katz S, Leifman G, Tal A (2005) Mesh segmentation using feature point and core extraction. Vis Comput 21:649–658. https://doi.org/10.1007/s00371-005-0344-9

    Article  Google Scholar 

  31. Mortara M, Patané G, Spagnuolo M, Falcidieno B, Rossignac J (2004) Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica 38:227–248. https://doi.org/10.1007/s00453-003-1051-4

    Article  MathSciNet  Google Scholar 

  32. Muraleedharan LP, Kannan SS, Karve A, Muthuganapathy R (2018) Random cutting plane approach for identifying volumetric features in a CAD mesh model. Comput Graph 70:51–61. https://doi.org/10.1016/j.cag.2017.07.025

    Article  Google Scholar 

  33. Shapira L, Shamir A, Cohen-Or D (2008) Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis Comput 24:249–259. https://doi.org/10.1007/s00371-007-0197-5

    Article  Google Scholar 

  34. Hase V, Bhalerao Y, Vikhe Patil G, Nagarkar M (2019) Intelligent threshold prediction for hybrid mesh segmentation through artificial neural network. In: Brijesh I, Deshpande P, Sharma S, Shiurkar U (eds) Computing in engineering and technology, advances in intelligent systems and computing, vol 1025. Springer, pp 889-899. https://doi.org/10.1007/978-981-32-9515-5_83

  35. Kim HS, Choi HK, Lee KH (2009) Feature detection of triangular meshes based on tensor voting theory. Comput Des 41:47–58. https://doi.org/10.1016/j.cad.2008.12.003

    Google Scholar 

  36. Hase V, Bhalerao Y, Jadhav S, Nagarkar M: Automatic Interacting Feature Recognition from CAD Mesh Models based on Hybrid Mesh Segmentation. Int J Adv Manuf Technol (Communicated)

    Google Scholar 

  37. Hase V, Bhalerao Y, Verma S, Wakchaure V (2019) Automatic interacting hole suppression from CAD mesh models. In: Brijesh I, Deshpande P, Sharma S, Shiurkar U (eds) Computing in engineering and technology, advances in intelligent systems and computing, vol 1025. Springer, pp 855–865. https://doi.org/10.1007/978-981-32-9515-5_80

  38. Kaick OVAN, Fish NOA, Kleiman Y, Asafi S, Cohen-or D (2014) Shape segmentation by approximate convexity analysis. ACM Trans Graph 34:1–11

    Article  Google Scholar 

  39. Hase V, Bhalerao Y, Verma S, Vikhe G (2018) Intelligent systems for volumetric feature recognition from CAD mesh models. In: Haldorai A, Ramu A, Mohanram S, Onn C (eds) EAI international conference on big data innovation for sustainable cognitive computing. EAI/Springer innovations in communication and computing. Springer, pp 109–119. https://doi.org/10.1007/978-3-030-19562-5_11

    Google Scholar 

Download references

Acknowledgements

This research was supported by Centre for Computational Technologies (CCTech), Pune, India. Special thanks are given to Dr. Truc Le and Dr. Ye Duan [9] for helping us to quantify percentage coverage. The authors are grateful to the authors Attene et al. [4], RANSAC [5], and GlobFit et al. [6] who have made their code available to the public.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav J. Hase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hase, V.J., Bhalerao, Y.J., Nagarkar, M.P., Jadhav, S.N. (2021). Quantitative Performance Analysis of Hybrid Mesh Segmentation. In: Haldorai, A., Ramu, A., Mohanram, S., Chen, MY. (eds) 2nd EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-47560-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47560-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47559-8

  • Online ISBN: 978-3-030-47560-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics