Skip to main content

Measurement of Oxidative Stress Markers In Vitro Using Commercially Available Kits

  • Chapter
  • First Online:
Measuring Oxidants and Oxidative Stress in Biological Systems

Abstract

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are highly reactive molecules, with significant effects in human diseases including cancer and cardiovascular disease. The ability to accurately and precisely detect the formation of free radicals within cells and tissues is crucial to developing proper treatments for the problems caused by ROS/RNS. Fluorescent probes have become widely available reagents of detecting ROS/RNS within cells. Several commercially available kits have shown their specificity toward detecting the formation of ROS and RNS. In this chapter, we discuss the principle behind each kit and the benefits and shortcomings of these kits, namely dihydroethidium (DHE), dichlorohydrofluoresin diacetate (DCF-DA), 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM diacetate), and 10-acetyl-3,7-dihyrdroxyphenoxazine (Amplex red). DHE is used to specifically detect superoxide, while DCF-DA readily detects hydroxyl radicals. Amplex red is used to detect hydrogen peroxide, and DAF-FM is used for measuring nitric oxide. However, due to the nature of their reactivity, the probes are not absolutely specific for the noted ROS/RNS species, and will react with others. ROS measurement may need to be made in real time, and they are short-lived within the cell, especially superoxide and nitric oxide. This chapter explains the mechanism behind each chemical kit, the protocols used with the kit, and show typical results after imaging. Additionally, an assessment is made on the use of the kit, identifying the advantages and disadvantages of each probe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brieger K, et al. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012;142:w13659.

    CAS  PubMed  Google Scholar 

  2. Valko M, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  PubMed  Google Scholar 

  3. Kovacic P, Jacintho JD. Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem. 2001;8(7):773–96.

    Article  CAS  PubMed  Google Scholar 

  4. Ridnour LA, et al. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci U S A. 2005;102(37):13147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Valko M, et al. Oxygen free radical generating mechanisms in the colon: do the semiquinones of vitamin K play a role in the aetiology of colon cancer? Biochim Biophys Acta. 2001;1527(3):161–6.

    Article  CAS  PubMed  Google Scholar 

  6. Dalle-Donne I, et al. Biomarkers of oxidative damage in human disease. Clin Chem. 2006;52(4):601–23.

    Article  CAS  PubMed  Google Scholar 

  7. Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000;18(6):655–73.

    Article  CAS  PubMed  Google Scholar 

  8. Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol. 2003;53(Suppl 3):S26–36; discussion S36–8.

    Article  CAS  PubMed  Google Scholar 

  9. Sayre LM, Smith MA, Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem. 2001;8(7):721–38.

    Article  CAS  PubMed  Google Scholar 

  10. Skulachev VP. Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases. J Alzheimers Dis. 2012;28(2):283–9.

    Article  CAS  PubMed  Google Scholar 

  11. Chen CA, et al. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature. 2010;468(7327):1115–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012;2012:736837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–55.

    Article  CAS  PubMed  Google Scholar 

  14. Commoner B, Townsend J, Pake GE. Free radicals in biological materials. Nature. 1954;174(4432):689–91.

    Article  CAS  PubMed  Google Scholar 

  15. Pastor N, et al. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J Mol Biol. 2000;304(1):55–68.

    Article  CAS  PubMed  Google Scholar 

  16. Radi R. Peroxynitrite, a stealthy biological oxidant. J Biol Chem. 2013;288(37):26464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferrari CK, et al. Oxidative and nitrosative stress on phagocytes' function: from effective defense to immunity evasion mechanisms. Arch Immunol Ther Exp. 2011;59(6):441–8.

    Article  CAS  Google Scholar 

  18. Bild W, et al. The interdependence of the reactive species of oxygen, nitrogen, and carbon. J Physiol Biochem. 2013;69(1):147–54.

    Article  CAS  PubMed  Google Scholar 

  19. Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci. 2005;26(4):190–5.

    Article  CAS  PubMed  Google Scholar 

  20. Bergendi L, et al. Chemistry, physiology and pathology of free radicals. Life Sci. 1999;65(18–19):1865–74.

    Article  CAS  PubMed  Google Scholar 

  21. Carr AC, McCall MR, Frei B. Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol. 2000;20(7):1716–23.

    Article  CAS  PubMed  Google Scholar 

  22. Martinez MC, Andriantsitohaina R. Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal. 2009;11(3):669–702.

    Article  CAS  PubMed  Google Scholar 

  23. Bayr H. Reactive oxygen species. Crit Care Med. 2005;33(12):S498–501.

    Article  Google Scholar 

  24. Pizzino G, et al. Oxidative stress: harms and benefits for human health. Oxidative Med Cell Longev. 2017;2017:8416763.

    Google Scholar 

  25. National Center for Health Statistics. Health, United States, 2016: with chartbook on long-term. Trends in Health; 2017.

    Google Scholar 

  26. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–10.

    Article  CAS  PubMed  Google Scholar 

  27. Held, P. (2015). “An introduction to reactive oxygen species.” Acessed Sept 2018, from https://www.biotek.es/assets/tech_resources/ROS%20White%20Paper_2015.pdf.

  28. Thor H, et al. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. J Biol Chem. 1982;257(20):12419–25.

    Article  CAS  PubMed  Google Scholar 

  29. Faulkner KM, Liochev SI, Fridovich I. Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J Biol Chem. 1994;269(38):23471–6.

    Article  CAS  PubMed  Google Scholar 

  30. Probes M. MitoSOX™ Red mitochondrial superoxide indicator, for live-cell imaging (M36008). Eugene, OR; 2005.

    Google Scholar 

  31. Loor G, et al. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radic Biol Med. 2010;49(12):1925–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barajas-Espinosa A, et al. Redox activation of DUSP4 by N-acetylcysteine protects endothelial cells from Cd(2+)-induced apoptosis. Free Radic Biol Med. 2014;74:188–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barajas-Espinosa A, et al. Modulation of p38 kinase by DUSP4 is important in regulating cardiovascular function under oxidative stress. Free Radic Biol Med. 2015;89:170–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dikalov S, Griendling KK, Harrison DG. Measurement of reactive oxygen species in cardiovascular studies. Hypertension. 2007;49(4):717–27.

    Article  CAS  PubMed  Google Scholar 

  35. Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. In: Armstrong D, editor. Advanced protocols in oxidative stress II. Totowa, NJ: Humana Press; 2010. p. 57–72.

    Chapter  Google Scholar 

  36. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.

    Article  CAS  PubMed  Google Scholar 

  37. Kondoh M, et al. Hypoxia-induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the tumor microenvironment. PLoS One. 2013;8(11).

    Google Scholar 

  38. Figueroa D, Asaduzzaman M, Young F. Real time monitoring and quantification of reactive oxygen species in breast cancer cell line MCF-7 by 2′,7′–dichlorofluorescin diacetate (DCFDA) assay. J Pharmacol Toxicol Methods. 2018;94:26–33.

    Article  CAS  PubMed  Google Scholar 

  39. Probes M. Nitric oxide indicators: DAF-FM and DAF-FM diacetate. Eugene, OR; 2001.

    Google Scholar 

  40. Namin SM, et al. Kinetic analysis of DAF-FM activation by NO: toward calibration of a NO-sensitive fluorescent dye. Nitric Oxide. 2013;28:39–46.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, et al. The nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) increases free radical generation and degrades left ventricular function after myocardial ischemia-reperfusion. Resuscitation. 2003;59(3):345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao B, Summers FA, Mason RP. Photooxidation of Amplex Red to resorufin: implications of exposing the Amplex Red assay to light. Free Radic Biol Med. 2012;53(5):1080–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gorris HH, Walt DR. Mechanistic aspects of horseradish peroxidase elucidated through single-molecule studies. J Am Chem Soc. 2009;131(17):6277–82.

    Article  CAS  PubMed  Google Scholar 

  44. Mishin V, et al. Application of the Amplex red/horseradish peroxidase assay to measure hydrogen peroxide generation by recombinant microsomal enzymes. Free Radic Biol Med. 2010;48(11):1485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  46. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016;15(1):71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Singh H, et al. Visualization and quantification of cardiac mitochondrial protein clusters with STED microscopy. Mitochondrion. 2012;12(2):230–6.

    Article  CAS  PubMed  Google Scholar 

  49. Ponnalagu D, et al. Molecular identity of cardiac mitochondrial chloride intracellular channel proteins. Mitochondrion. 2016;27:6–14.

    Article  CAS  PubMed  Google Scholar 

  50. Landry DW, et al. Epithelial chloride channel. Development of inhibitory ligands. J Gen Physiol. 1987;90(6):779–98.

    Article  CAS  PubMed  Google Scholar 

  51. Landry DW, et al. Purification and reconstitution of chloride channels from kidney and trachea. Science. 1989;244(4911):1469–72.

    Article  CAS  PubMed  Google Scholar 

  52. Ponnalagu D, Singh H. Anion channels of mitochondria. Handb Exp Pharmacol. 2017;240:71–101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Jiang L, et al. Intracellular chloride channel protein CLIC1 regulates macrophage function through modulation of phagosomal acidification. J Cell Sci. 2012;125(Pt 22):5479–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gururaja Rao S, et al. Three decades of chloride intracellular channel proteins: from organelle to organ physiology. Curr Protoc Pharmacol. 2018;80(1):11.21.1–11.21.17.

    Article  CAS  Google Scholar 

  55. Singh H. Two decades with dimorphic chloride intracellular channels (CLICs). FEBS Lett. 2010;584(10):2112–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

I would like to acknowledge funding from National Institutes of Health (NIH) R01 Grant HL136232 to MK and HL133050 to HS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gardiner, B. et al. (2020). Measurement of Oxidative Stress Markers In Vitro Using Commercially Available Kits. In: Berliner, L., Parinandi, N. (eds) Measuring Oxidants and Oxidative Stress in Biological Systems. Biological Magnetic Resonance, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-47318-1_4

Download citation

Publish with us

Policies and ethics