Skip to main content

Spindt Cathodes and Other Field Emitter Arrays

  • Chapter
  • First Online:
Modern Developments in Vacuum Electron Sources

Part of the book series: Topics in Applied Physics ((TAP,volume 135))

  • 1546 Accesses

Abstract

Based on the introduction of semiconductor technologies, the application of thin-film and micromachining techniques to fabricate integrated vacuum field emission devices in the submicron size range became feasible in the 1960s. These were pioneered at SRI by C. Spindt and colleagues, who first introduced gated field emitter arrays. There are several previous extended reviews on this topic published until 2001 [1]. The present chapter presents a short wrap up of fabrication techniques and structures, and a performance update on Spindt arrays and on field emitter arrays (FEAs) in general. This chapter will only deal with regular array structures and their specific advantages and problems; random structures will not be discussed. A critical evaluation of progress and of application of FEAs in devices is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Zhu (ed.), Vacuum Microelectronics (Wiley 2001). including chapter 1: “Historical Overview” by Takao Utsumi

    Google Scholar 

  2. C. Spindt, I. Brodie, C. Holland, P. Schwoebel, Spindt Field Emitter Arrays, in Chapter 4 of Vacuum Microelectronics (Wiley 2001), pp. 105–186

    Google Scholar 

  3. K. Jensen, Theory of field emission, in Chapter 3 of Vacuum Microelectronics (Wiley 2001), pp. 33–104

    Google Scholar 

  4. I. Brodie, C.A. Spindt, Vacuum microelectronics, in Advances in Electronics and Electron Physics, vol. 83, ed. by P.W. Hawkes (Academic Press, New York 1992), pp. 1–106

    Google Scholar 

  5. N. Cade, R. Lee, Vacuum microelectronics. GEC J. Res. 7(3), 129–138 (1990)

    Google Scholar 

  6. Dorota Temple, Recent progress in field emitter array development for high performance applications. Mater. Sci. Eng. R24, 185–239 (1999)

    Article  Google Scholar 

  7. N. Egorov, E.P. Sheshin, Electron field emission, principles and applications (In Russian), Intellekt 2011; Updated English version Field Emission Electronics published by Springer in 2017

    Google Scholar 

  8. C.A. Spindt, K.R. Shoulders, Research in micron-size Field-emission tubes, in IEEE Conference Record, Eighth Conference on Tube Techniques (1966), p. 143

    Google Scholar 

  9. C.A. Spindt, A thin-film field-emission cathode. J. Appl. Phys. 39, 350 (1968)

    Article  Google Scholar 

  10. R. Meyer, A. Ghis, P. Rambaud, F. Muller, Microchip florescent display, in Proc. Japan Display (1985), p. 513

    Google Scholar 

  11. C.E. Holland, C.A. Spindt, I. Brodie, J. Mooney, E.R. Westerberg, Matrix addressed cathodoluminescent display, in Int. Display Conf. (London, UK, 1987)

    Google Scholar 

  12. G. Gaertner, P. Janiel, J.E. Crombeen, J. Hasker, Top-layer scandate cathodes by plasma- activated CVD, in Vacuum Microelectronics 1989, ed. by R.E. Turner, Institute of Physics Conf. Series No. 99 (Bristol, New York), pp. 25–28

    Google Scholar 

  13. Ivor Brodie, Julius J. Muray, The Physics Of Micro/Nano-Fabrication (Springer, Boston, MA, 1992)

    Book  Google Scholar 

  14. I. Brodie, E.R. Westerberg, D.R. Cone, J.J. Muray, N. Williams, L. Gasiorek, A multiple- electron- beam exposure system for high-throughput, direct-write submicrometer lithography. IEEE Transact. Electron Dev. 28(11), 1422–1428 (1981)

    Article  ADS  Google Scholar 

  15. C.A. Spindt, I. Brodie, L. Humphrey, E.R. Westerberg, Physical properties of thin-film field emission cathodes with molybdenum cones. J. Appl. Phys. 47, 5248 (1976)

    Article  ADS  Google Scholar 

  16. X. Chen, S. Zaidi, D. Devine, S. Brueck, J. Vac. Sci. Technol. B. 14, 3339 (1996)

    Article  Google Scholar 

  17. C.H. Oh, J.D. Lee, et al., Fabrication of metal field emitter arrays for low voltage and high current operation, J. Vac. Sci. Technol. B. 16, 807 (1998)

    Google Scholar 

  18. C. Bozler, C. Harris, S. Rabe, D. Rathman, M. Hollis, H. Smith, Arrays of gated field-emitter cones having 0.32 μm tip-to-tip spacing. J. Vac. Sci. Technol. B. 12, 629 (1994)

    Google Scholar 

  19. P.R. Schwoebel, C.A. Spindt, C.E. Holland, High current, high current density field emitter array cathodes. J. Vac. Sci. Technol. B. 23/2, 691f.(2005)

    Google Scholar 

  20. J.H. Jung et al., Electron emission performance of Mo tip FEAs with nitrogen-doped hydrogen-free DLC coating, in Proceedings of 12th IVMC (Darmstadt 1999), pp. 110–111

    Google Scholar 

  21. J. Shaw, J. Itoh, Silicon Field Emitter Arrays, in Chapter 5 of Vacuum Microelectronics (Wiley, 2001), pp. 187–246

    Google Scholar 

  22. J.M. Macaulay, I. Brodie, C.A. Spindt, C.E. Holland, Appl. Phys. Lett. 61, 997 (1992)

    Article  ADS  Google Scholar 

  23. C.A. Spindt, C.E. Holland, A. Rosengreen, I. Brodie, Field-emitter arrays for vacuum microelectronics. IEEE Trans. Electron Devices 38, 2355 (1991)

    Article  ADS  Google Scholar 

  24. C.A. Spindt, C.E. Holland, P.R. Schwoebel, I. Brodie, Field emitter array development for microwave applications II. J. Vac. Sci. Technol. B. 16, 758–761 (1998)

    Article  Google Scholar 

  25. C.A. Spindt, C.E. Holland, P.R. Schwoebel, I. Brodie, Field-emitter-array development for microwave applications. J. Vac. Sci. Technol. B. 14, 1986 (1996)

    Article  Google Scholar 

  26. I. Brodie, C.A. Spindt, The application of thin-film field-emission cathodes to electronic tubes. Appl. Surf. Sci. 2, 149–163 (1979)

    Article  ADS  Google Scholar 

  27. C.A. Spindt, C. Holland, R. Stowell, Field emission array development for high-current-density applications. Appl. Surf. Sci. 16, 268–276 (1983)

    Article  ADS  Google Scholar 

  28. R. Forman, Evaluation of emission capabilities of Spindt-type field emitting cathodes. Appl. Surf. Sci. 16, 277–291 (1983)

    Article  ADS  Google Scholar 

  29. C. Herring, Structures and Properties of Solid Surfaces (University of Chicago Press, Chicago,1953). p. 5

    Google Scholar 

  30. M. Benjamin, R.O. Jenkins, Proc. R. Soc. Lond. A. 176, 262 (1940)

    Article  ADS  Google Scholar 

  31. R. Gomer, Field Emission and Field Ionization (Harvard University Press, Cambridge/MA, 1961). p. 54

    Google Scholar 

  32. B. Gnade, in Proc. Spring Meeting of the Materials Research Society, Tutorial Program, Symposium G (San Francisco, CA, 1997)

    Google Scholar 

  33. P.R. Schwoebel, C.A. Spindt, I. Brodie, Electron emission enhancement by over-coating molybdenum field-emitter arrays with titanium, zirconium, and hafnium. J. Vac. Sci. Technol. B. 13, 338 (1995)

    Article  Google Scholar 

  34. C.A. Spindt, C.E. Holland, A. Rosengreen, I. Brodie, Field emitter-array development for high- frequency operation. J. Vac. Sci. Technol. B. 11, 468 (1993)

    Article  Google Scholar 

  35. G.N.A. van Veen, Space-charge effects in Spindt-type field emission cathodes. J. Vac. Sci. Technol. B. 12, 655 (1994)

    Article  Google Scholar 

  36. C.A. Spindt, C.E. Holland, P.R. Schwoebel, Thermal field forming of Spindt cathode arrays. J. Vac. Sci. Technol. B. 33, 03C108–1 (2015)

    Article  Google Scholar 

  37. G. Gaertner, H.W.P. Koops, Vacuum Electron Sources and their Materials and Technologies, in chapter 10 of Vacuum Electronics, Components and Devices, ed. J. Eichmeier, M. Thumm (Springer, 2008)

    Google Scholar 

  38. P.R. Schwoebel, C.A. Spindt, C.E. Holland, Spindt cathode tip processing to enhance emission stability and high-current performance. J. Vac. Sci. Technol. B. 21, 433 (2003)

    Article  Google Scholar 

  39. A. Mustonen, V. Guzenko, C. Spreu, T. Feurer, S. Tsujino, High-density metallic nano-emitter arrays and their field emission characteristics. Nanotechnology 25, 085203 (2014)

    Article  ADS  Google Scholar 

  40. C. Spindt, C. Holland, I. Brodie et al., Field emitter arrays applied to vacuum fluorescent display. IEEE Trans. ED 36, 225–228 (1989)

    Article  ADS  Google Scholar 

  41. H. Busta, Field emission flat panel displays, in chapter 7 of Vacuum Microelectronics (Wiley, 2001), pp. 289–347

    Google Scholar 

  42. P. Schwoebel et al., Field emission arrays for medical X-ray imaging. Appl. Phys. Lett. 88, 113902 (2006)

    Article  ADS  Google Scholar 

  43. R.A. Murphy, M.A. Codis, Cold cathode microwave devices, in chapter 8 of Vacuum Microelectronics (Wiley, 2001), pp. 349–391

    Google Scholar 

  44. G. Gaertner, Historical development and future trends of vacuum electronics. J. Vac. Sci. Technol. B. 30/6, 060801(2012)

    Google Scholar 

  45. D.R. Whaley, B.M. Gannon, C.R. Smith, C.M. Armstrong, C.A. Spindt, Application of field emitter arrays to microwave power amplifiers. IEEE Trans. Plasma Sci. 28, 727–747 (2000)

    Article  ADS  Google Scholar 

  46. J.X. Qiu, B. Levush et al., Vacuum tube amplifiers. IEEE Microw. Mag. 38–51 (2009)

    Google Scholar 

  47. J.A. Hart, A History of Field Emission Displays (Indiana University, 1999). http://www.indiana.edu/~hightech/fpd/papers/FEDs.PDF

  48. J. Lieberman, Field-Emission Displays Get a Second Wind?”, IEEE Spectrum, 1.10.2003

    Google Scholar 

  49. P.R. Schwoebel, J.M. Boone, J. Shao, Studies of a prototype linear stationary X-ray source for tomosynthesis imaging. Phys Med Biol. 59, 2393–2413 (2014)

    Google Scholar 

  50. G.Z. Yue, O. Zhu et al., Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode. Appl. Phys. Lett. 81, 355–357 (2002)

    Google Scholar 

  51. S Cheng et al., A compact X-ray generator using a nanostructured field emission cathode and a micro-structured transmission anode. J. Phys. Conf. Ser. 476, 012016 (2013)

    Google Scholar 

  52. T. Hirano, S. Kanemaru, J. Itoh, Emission current saturation of the p-type silicon gated field emitter array. J. Vac. Sci. Technol. B. 14, 3357 (1996)

    Article  Google Scholar 

  53. T. Matsukawa, S. Kanemaru, K. Tokunaga, J. Itoh, Individual tip evaluation in Si field emitter arrays by electrostatic lens projector. J. Vac. Sci. Technol. B. 18, 952 (2000)

    Article  Google Scholar 

  54. J. Itoh, Development and applications of field emitter arrays in Japan. Appl. Surf. Sci. 111, 194–203 (1997)

    Article  ADS  Google Scholar 

  55. S. Kanemaru, T. Hirano, H. Tanoue, J. Itoh, Control of emission characteristics of silicon field emitter arrays by an ion implantation technique. J. Vac. Sci. Technol. B. 14, 1885 (1996)

    Article  Google Scholar 

  56. D. Temple, W.D. Palmer, L.N. Yadon, J.E. Mancusi, D. Vellenga, G.E. McGuire, Silicon field emitter cathodes: fabrication, performance, and applications. J. Vac. Sci. Technol. A. 16, 1980 (1998)

    Article  ADS  Google Scholar 

  57. T. Matsukawa, S. Kanemaru, K. Tokunaga, J. Itoh, Effects of conduction type on field-electron emission from single Si emitter tips with extraction gate. J. Vac. Sci. Technol. B. 18, 1111 (2000)

    Article  Google Scholar 

  58. D. Palmer, H.F. Gray, J. Mancusi, D. Temple, C. Ball, J. Shaw, G.E. McGuire, Silicon field emitter arrays with low capacitance and improved transconductance for microwave amplifier applications. J. Vac. Sci. Technol. B. 13, 576–579 (1995)

    Article  Google Scholar 

  59. S. Kanemaru, T. Hirano, H. Tanoue, J. Itoh, Control of emission current from silicon field emitter arrays using a built-in MOSFET. Appl. Surf. Sci. 111, 218–223 (1997)

    Article  ADS  Google Scholar 

  60. M. Nagao, D. Nicolaescu, T. Matsukawa, S. Kanemaru, J. Itoh, T. Sato, Y. Sato, N. Wada, Metal–oxide–semiconductor field-effect transistor-structured Si field emitter array with a built-in ring gate lens. J. Vac. Sci. Technol. B. 21, 495 (2003)

    Article  Google Scholar 

  61. H. Gama, S. Kanemaru, J. Itoh, A field emitter array monolithically integrated with a thin film transistor on glass for display applications. Appl. Surf. Sci. 146, 187–192 (1999)

    Article  ADS  Google Scholar 

  62. K. Ehara, S. Kanemaru, T. Matsukawa, J. Itoh, Improvement of electron emission characteristics of Si field emitter arrays by surface modification. Appl. Surf. Sci. 146, 172–175 (1999)

    Article  ADS  Google Scholar 

  63. J. Itoh, K. Uemura, S. Kanemaru, Three-dimensional vacuum magnetic sensor with a Si emitter tip. J. Vac. Sci. Technol. B 16, 1233 (1998)

    Article  Google Scholar 

  64. M. Nagao, C. Yasumuro, M. Taniguchi, S. Itoh, S. Kanemaru, J. Itoh, Field emitter array with a memory function for ultrahigh luminance field emission display. J. Vac. Sci. Technol. B25, 464 (2007)

    Article  Google Scholar 

  65. B. Wei, R. Vajtai, P.M. Ajayan, Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79, 1172 (2001)

    Article  ADS  Google Scholar 

  66. N. de Jonge, J.-M. Bonard, Carbon nanotube electron sources and applications. Phil. Trans. R. Soc. Lond. A 362, 2239–2266 (2004)

    Article  ADS  Google Scholar 

  67. Z. Chen, G. Cao, Z. Lin, D. den Engelsen et al., Synthesis and emission properties of carbon nanotubes grown by sandwich catalyst stacks. J. Vac. Sci. Technol. B 24, 1017 (2006)

    Article  Google Scholar 

  68. Z. Chen, P.K. Bachmann et al., Fabrication and characterization of carbon nanotube arrays using sandwich catalyst stacks. Carbon 44, 225–230 (2006)

    Article  Google Scholar 

  69. Z. Chen, P.K. Bachmann et al., Growth of uniform carbon nanotube arrays with sandwich technology. J. Soc. Inf. Display 16, 645 (2008)

    Article  Google Scholar 

  70. Z. Chen, P.K. Bachmann, et al., Field emission from CNT bundles for application in biomedical equipment, in Proc. 8th Int. Vac. Electron Sources Conf. and Nanocarbon (IEEE Press, Nanjing, 2010), pp. 111–112

    Google Scholar 

  71. S.H. Heo, H.J. Kim et al., A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters. Nanoscale Res. Lett. 7, 258 (2012)

    Article  ADS  Google Scholar 

  72. G. Yue, O. Zhou, Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube based field-emission cathode. Appl. Phys. Lett. 81, 355 (2002)

    Article  ADS  Google Scholar 

  73. J. Ryu, J. Kang, K. Park, Carbon nanotube electron emitter for X-ray imaging. Materials 5, 2353–2359 (2012)

    Google Scholar 

  74. N. de Jonge, N. van Druten, Field emission from individual multiwalled carbon nanotubes prepared in an electron microscope. Ultramicroscopy 95, 85–91 (2003)

    Article  Google Scholar 

  75. W.I. Milne, K. Teo, G. Amaratunga et al., Carbon nanotubes as field emission sources. J. Mater. Chem. 14, 933–943 (2004)

    Article  Google Scholar 

  76. G. Amaratunga, Watching the nanotubes. IEEE Spectr. 40, 28–32 (2003)

    Article  Google Scholar 

  77. L. Nilsson, O. Groening, J.-M. Bonard et al., Appl. Phys. Lett. 76, 2071–2073 (2000) and L.-O. Nilsson, Microscopic characterization of electron field emission from carbon nanotubes and carbon thin-film electron emitters”, PhD thesis, University Freiburg (CH), p. 79 (2001)

    Google Scholar 

  78. K. Teo, S. Lee, W. Milne et al., Plasma enhanced chemical vapour deposition carbon nanotubes/ nanofibres—how uniform do they grow? Nanotechnology 14, 204–211 (2003)

    Article  ADS  Google Scholar 

  79. Z. Chen, P.K. Bachmann et al., High emission current density microwave-plasma-grown carbon nanotube arrays by post-depositional radio-frequency oxygen plasma treatment. Appl. Phys. Lett. 87, 243104 (2005)

    Article  ADS  Google Scholar 

  80. W. Knapp, D. Schleussner, Field-emission charcteristics of carbon buckypaper. JVST B 21, 557–561 (2003)

    ADS  Google Scholar 

  81. W. Knapp, D. Schleussner, Special features of electron sources with CNT field emitter and micro-grid. Appl. Surf. Sci. 251, 164–169 (2005)

    Article  ADS  Google Scholar 

  82. R. Parmee, C. Collins, W. Milne, M. Cole, X-ray generation using carbon nanotubes. Nano Converg. 2(1), 1–27 (2015)

    Article  Google Scholar 

  83. M. Cole, R. Parmee, W. Milne, Nanomaterial-based x-ray sources. Nanotechnology 27, 082501 (2016)

    Article  ADS  Google Scholar 

  84. P. Sarrazin, D. Blake, M. Meyyappan et al., Carbon-nanotube field emission X-ray tube for space exploration XRD/XRF instrument. Adv. X-Ray Anal. 47, 232 (2004)

    Google Scholar 

  85. M. Cole, M. Mann, K. Teo, W. Milne, Engineered carbon nanotube field emission devices, in Chapter 5 of Emerging Nanotechnologies for Manufacturing, 2nd edn. (Pergamon/Elsevier Science, 2014), pp. 126–185

    Google Scholar 

  86. G.N. Fursey, Field emission in vacuum micro-electronics. Appl. Surf. Sci. 215, 113 (2003)

    Article  ADS  Google Scholar 

  87. G. van Gorkom, A. Hoeberechts, Back-biased junction cold cathodes: history and state of the art, in Vacuum Microelectronics 1989, IOP Conference Series 99 (Institute of Physics, Bristol, 1989), pp. 41–52

    Google Scholar 

  88. V.V. Zhirnov, C. Lizzul-Rinne, G.J. Wojak, R.C. Sanwald, J.J. Hren, “Standardization” of field emission measurements. J. Vac. Sci. Technol. B 19, 87 (2001)

    Article  Google Scholar 

  89. F. Charbonnier, “Developing and using the field emitter as a high intensity electron source. Appl. Surf. Sci. 94/95, 26–43 (1996)

    Google Scholar 

  90. D. Wenger, W. Knapp, B. Hensel, S. F. Tedde, Transition of electron field emission to normal glow discharge. IEEE Transact. Electron Devices, 61(11), 3864–3870 (2014)

    Google Scholar 

  91. P.R. Schwoebel, C.A. Spindt, Glow discharge processing to enhance field-emitter array performance. J. Vac. Sci. Technol. B. 12, 2414 (1994)

    Article  Google Scholar 

  92. P.R. Schwoebel, C.A. Spindt, C.E. Holland, Emission uniformity enhancement between micro-fabricated tips in cold cathode arrays. J. Vac. Sci. Technol. B. 19, 582 (2001)

    Article  Google Scholar 

  93. P.R. Schwoebel, C.A. Spindt, C.E. Holland, J.A. Panitz, Field emission current cleaning and annealing of micro-fabricated cold cathodes. J. Vac. Sci. Technol. B. 19, 980 (2001)

    Article  Google Scholar 

  94. C. Holland, C. Spindt, A. Rosengren, I. Brodie, Field emitter array development for high-frequency operation. Conference Record of TRI/NASA Cathode Workshop (Cleveland/Ohio 1994), pp. 87–90

    Google Scholar 

Download references

Acknowledgement

The authors want to thank Ivor Brodie for his advice w.r.t. relevant literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Gaertner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaertner, G., Knapp, W. (2020). Spindt Cathodes and Other Field Emitter Arrays. In: Gaertner, G., Knapp, W., Forbes, R.G. (eds) Modern Developments in Vacuum Electron Sources. Topics in Applied Physics, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-030-47291-7_12

Download citation

Publish with us

Policies and ethics