Skip to main content

Biopolymeric Gels in Drug Delivery

  • Chapter
  • First Online:
Advanced Biopolymeric Systems for Drug Delivery

Abstract

Biopolymers or the natural polysaccharides like alginate, chitosan, pectin, cellulose and their derivatives, etc., have been used in recent research studies for a number of significant advantages like their biocompatibility, biodegradability, safety, and cost-effectivity. They have been evaluated in a number of formulation strategies including matrix tablets, microencapsulation, nanoparticulate delivery, targeted drug delivery in various parts of the gastrointestinal tract according to pH or microbial population, etc. Further, they have been extensively utilized in the formation of gels by physical or chemical cross-linking methods for advanced drug delivery. Such biopolymeric gels find applications not only in controlled or targeted drug delivery but also in biomedical fields. Such gel formulations would provide controlled or targeted drug release based on their physicochemical properties including thermal sensitivity, pH sensitivity, analyte sensitivity or presence or absence of microbial population, etc. Recent inventions in this field include the smart gels which produce significant changes in drug delivery with minimum changes in the environment or the in situ gels which remain in the liquid state outside the body and would turn into gel at body temperature, once delivered. Further, modified or grafted biopolymers have been tried out for the formation of stable gels with favorable physicochemical properties for better control on drug delivery. The present chapter would present a review of the potential biopolymeric gels, their preparation, characterization, and most importantly their applications in modern drug delivery taking into account the recent innovations in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, A.M., Moxon, S., Morris, G.A.: Biopolymers as wound healing materials. Wound Heal. Biomater. 2, 261–287 (2016). https://doi.org/10.1016/B978-1-78242-456-7.00013-1

    Article  CAS  Google Scholar 

  2. Mohiuddin, M., Kumar, B., Haque, S.: Biopolymer composites in photovoltaics and photodetectors. Biopolym. Compos. Electron., 459–486 (2017). https://doi.org/10.1016/B978-0-12-809261-3.00017-6

  3. Numata, K., Kaplan, D.L.: Biologically derived scaffolds. In: David, F. (ed.) Advanced Wound Repair Therapies. Woodhead Publishing Series in Biomaterials, pp. 524–551 (2011)

    Google Scholar 

  4. Jaiswal, L., Shankar, S., Rhima, J.W.: Applications of nanotechnology in food microbiology. Methods Microbiol. 46, 43–60 (2019). https://doi.org/10.1016/bs.mim.2019.03.002

    Article  CAS  Google Scholar 

  5. Vroman, I., Tighzert, L.: Biodegrad. Polym. Mater. 2, 307–344 (2009). https://doi.org/10.3390/ma2020307

    Article  CAS  Google Scholar 

  6. Gracia, M.C.: Drug delivery systems based on non immunogenic biopolymers. In: Parambath, A. (ed.) Engineering of Biomaterials for Drug Delivery Systems, pp. 317–344 (2018). https://doi.org/10.1016/B978-0-08-101750-0.00012-X

  7. Jacob, J., Haponiuk, J.T., Thomas, S., Gopi, S.: Biopolymer based nanomaterials in drug delivery: a review. Mater. Today Chem. 9, 43–55 (2018). https://doi.org/10.1016/j.mtchem.2018.05.002

    Article  CAS  Google Scholar 

  8. Paul, S.D., Sharma, H., Jeswani, G., Jha, A.K.: Novel gels: implications for drug delivery. In: Nanostructures for Drug Delivery, pp. 379–412 (2017). https://doi.org/10.1016/B978-0-323-46143-6.00012-9

  9. Aggarwal, G., Nagpal, M.: Pharmaceutical polymer gels in drug delivery. In: Polymer Gels, pp. 249–284 (2018). https://doi.org/10.1007/978-981-10-6080-9_10

  10. Saka, R., Sathe, P., Khan, W.: Brain local delivery strategy. In: Gao, H., Gao, X. (eds.) Brain Targeted Drug Delivery System, pp. 241–286 (2019). https://doi.org/10.1016/B978-0-12-814001-7.00011-1

  11. Peppas, N.A., Buresa, P., Leobandunga, W., Ichikawa, H.: Hydrogels in pharmaceutical formulations. Eur. J. Pharm Biopharm. 50, 27–46 (2000). https://doi.org/10.1016/S0939-6411(00)00090-4

    Article  CAS  Google Scholar 

  12. Vintiloiu, A., Leroux, J.C.: Organogels and their use in drug delivery- a review. J. Control Release 125, 179–192 (2008). https://doi.org/10.1016/j.jconrel.2007.09.014

    Article  CAS  Google Scholar 

  13. Sasaki, Y., Akiyoshi, K.: Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem. Rec. 10, 366–376 (2010). https://doi.org/10.1002/tcr.201000008

    Article  CAS  Google Scholar 

  14. Bayat, M., Nasri, S.: Injectable microgel-hydrogel composites “plum pudding gels”: new system for prolonged drug delivery. In: Nanomaterials for Drug Delivery and Therapy, pp. 343–372 (2019). https://doi.org/10.1016/B978-0-12-816505-8.00001-1

  15. Calo, E., Khutoryanskiy, V.V.: Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015). https://doi.org/10.1016/j.eurpolymj.2014.11.024

    Article  CAS  Google Scholar 

  16. Mauney, J.R., Cannon, G.M., Michael, L., Lovett, M.L., Gong, E.D., Vizio, D.D., Gomez, P., III., Kaplan, D.L., Adam, R.M., Estrada, C.S., Jr.: Evaluation of gel spun silk-based biomaterials in a murine model of bladder augmentation. Biomaterials 32, 808–818 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.051

    Article  CAS  Google Scholar 

  17. Buchholz, F.L., Peppas, N.A.: Superabsorbent polymers-science and technology. In: Buchholz, F.L., Peppas, N.A. (eds.) Polymer International, vol. 39, pp. 1–148 (1994)

    Google Scholar 

  18. Peppas, L.B., Harland, R.S.: Absorbent polymer technology. In: Peppas, L.B., Harland, R.S. (eds.) Studies in Polymer Science, vol. 8, 1st edn., pp. 3–272 (1991)

    Google Scholar 

  19. Ahmed, E.M.: Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6, 105–121 (2015). https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  Google Scholar 

  20. Li, Y., Huang, G., Zhang, X., Li, B., Chen, Y., Lu, T., Lu, T.J., Xu, F.: Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 23, 1–13 (2012). https://doi.org/10.1002/adfm.201201708

    Article  CAS  Google Scholar 

  21. Shin, J., Braun, P.V., Lee, W.: Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sens. Act. B Chem. 150(1), 183–190 (2010). https://doi.org/10.1016/j.snb.2010.07.018

    Article  CAS  Google Scholar 

  22. Burkert, S., Schmidta, T., Gohsb, U., Dorschnerc, H., Arndt, K.F.: Cross-linking of poly(N-vinyl pyrrolidone) films by electron beam irradiation. Rad. Phys. Chem. 76, 1324–1328 (2007). https://doi.org/10.1016/j.radphyschem.2007.02.024

  23. Wichterle, O., Lim, D.: Hydrophilic gels for biological use. Nature 185, 117–118 (1960)

    Article  Google Scholar 

  24. Saxena, A.K., Graz, M.D.: Synthetic biodegradable hydrogel (PleuraSeal) sealant for sealing of lung tissue after thoracoscopic resection. J. Thor. Cardio. Surg. 139, 496–497 (2010). https://doi.org/10.1016/j.jtcvs.2008.11.003

    Article  CAS  Google Scholar 

  25. Li, J., Mooney, D.J.: Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 1–31 (2016)

    Google Scholar 

  26. Hamidi, M., Azadi, A., Rafiei, P.: Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 60(15), 1638–1649 (2008). https://doi.org/10.1016/j.addr.2008.08.002

    Article  CAS  Google Scholar 

  27. Narayanaswamy, R., Torchilin, V.P.: Hydrogels and their applications in targeted drug delivery. Molecules 24, 1–21 (2019). https://doi.org/10.3390/molecules24030603

    Article  CAS  Google Scholar 

  28. Park, J.H., Kim, D.: Preparation and characterization of water-Swellable natural rubbers. J. App. Polym. Sci. 80, 115–121 (2001). https://doi.org/10.1002/1097-4628(20010404)80:1<115::AID-APP1079>3.0.CO;2-K

    Article  CAS  Google Scholar 

  29. Chen, X., Martin, B.D., Neubauer, T.K., Linhardt, R.J., Dordick, J.S., Rethwisch, D.G.: Enzymatic and chemoenzymatic approaches to synthesis of sugar-based polymer and hydrogels. Carbohydr. Polym. 28, 15–21 (1995). https://doi.org/10.1016/0144-8617(95)00082-8

    Article  CAS  Google Scholar 

  30. Kashyap, K., Kumar, N., Ravi Kumar, M.N.V.: Hydrogels for pharmaceutical and biomedical applications. Critic. Rev. Ther. Drug Carrier Sys. 22, 107–150 (2005). https://doi.org/https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v22.i2.10

  31. Kaihara, S., Matsumura, S., Fisher, J.P.: Synthesis and characterization of cyclic acetal based degradable hydrogels. Eur. J. Pharm. Biopharm. 68, 67–73 (2008). https://doi.org/10.1016/j.ejpb.2007.05.019

    Article  CAS  Google Scholar 

  32. Stamatialis, D.F., Papenburg, B.J., Girones, M., Saiful, S., Bettahalli, S.N.M., Schmitmeier, S., Wessling, M.: Medical applications of membranes: drug delivery, artificial organs and tissue engineering. J. Mem. Sci. 308(1–2), 1–34 (2008). https://doi.org/10.1016/j.memsci.2007.09.059

    Article  CAS  Google Scholar 

  33. Zhang, X., Zhang, W., Yang, M.: Application of hydrogels in cartilage tissue engineering. Curr. Stem Cell Res. Ther. 13, 497–516 (2018). https://doi.org/10.2174/1574888X12666171017160323

    Article  CAS  Google Scholar 

  34. Slaughter, B.V., Khurshid, S.S., Fisher, O.Z., Khademhosseini, A., Peppas, N.A.: Hydrogels in regenerative medicine. Adv. Mater. 21, 3307–3329 (2009). https://doi.org/10.1002/adma.200802106

    Article  CAS  Google Scholar 

  35. Wang, F., Li, Z., Khan, M., Tamama, K., Kuppusamy, P., Wagner, W.R., Sen, C.K., Guan, J.: Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomaterialia 6, 1978–1991 (2010). https://doi.org/10.1016/j.actbio.2009.12.011

  36. Sikareepaisan, P., Ruktanonchai, U., Supaphol, P.: Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydr. Polym. 83, 1457–1469 (2011). https://doi.org/10.1016/j.carbpol.2010.09.048

    Article  CAS  Google Scholar 

  37. Krsko, P., McCann, T.E., Thach, T.T., Laabs, T.L., Geller, H.M.: Length-scale mediated adhesion and directed growth of neural cells by surface-patterned poly(ethylene glycol) hydrogels. Biomaterials 30, 721–729 (2009). https://doi.org/10.1016/j.biomaterials.2008.10.011

    Article  CAS  Google Scholar 

  38. Mohamed, M.I.: Optimization of chlorphenes in emulgel formulation. AAPS J. 6, 1–7 (2004). https://doi.org/10.1208/aapsj060326

    Article  Google Scholar 

  39. Ajazuddin, Alexander, A., Khichariya, A., Gupta, S., Patel, R.J., Giri, T.K., Tripathi, D.K.: Recent expansions in an emergent novel drug delivery technology. Emulgel. J. Controll. Rel. 171, 122–132 (2013). https://doi.org/10.1016/j.jconrel.2013.06.030

  40. Sah, S.K., Badola, A., Nayak, B.K., Nayak, B.K.: Emulgel: magnifying the application of topical drug delivery. Ind. J. Pharm. Biol. Res. 5, 25–33 (2017). https://doi.org/10.30750/ijpbr.5.1.4

    Article  CAS  Google Scholar 

  41. Baker, W.O.: Microgel, a new macromolecule. Relation to sol and gel as structural elements of synthetic rubber. Rubber Chem. Technol. 22(4), 511–520 (1949). https://doi.org/10.5254/1.3543023

  42. Thorne, J.B., Vine, J.G., Snowden, M.J.: Microgel applications and commercial considerations. Colloid Polym. Sci. 289, 625–646 (2011). https://doi.org/10.1007/s00396-010-2369-5

    Article  CAS  Google Scholar 

  43. Forsling, M.: Cells, gels and the engines of life. In: Pollack, G.H., pp. 320. Ebner and Sons Publishers (2001). ISBN 0 9626895 2 1. Exper. Physiol. 87(3), 401–401 (2002). https://doi.org/10.1113/eph8702381

  44. Chowdary, K.P.R., Rao, Y.S.: Mucoadhesive microspheres for controlled drug delivery. Biol. Pharm. Bull. 27, 1717–1724 (2004). https://doi.org/10.1248/bpb.27.1717

    Article  CAS  Google Scholar 

  45. Alpar, H.O., Somavarapu, S., Atuah, K.N., Bramwell, V.W.: Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv. Drug Deliv. Rev. 57, 411–430 (2005). https://doi.org/10.1016/j.addr.2004.09.004

    Article  CAS  Google Scholar 

  46. Peppas, N.A., Huang, Y.: Nanoscale technology of mucoadhesive interactions. Adv. Drug Deliv. Rev. 56(11), 1675–1687 (2004). https://doi.org/10.1016/j.addr.2004.03.001

    Article  CAS  Google Scholar 

  47. Lu, S., Liu, M., Ni, B.: Degradable, injectable poly(N-isopropylacrylamide)-based hydrogels with low gelation concentrations for protein delivery application. Chem. Eng. J. 173, 241–250 (2011). https://doi.org/10.1016/j.cej.2011.07.052

    Article  CAS  Google Scholar 

  48. Sahiner, N., Ozay, O., Aktas, N.: 4-Vinylpyridine-based smart nanoparticles with N-isopropylacrylamide, 2-hydroxyethyl methacrylate, acrylic acid, and methacrylic acid for potential biomedical applications. Curr. Nanosci. 7, 453–462 (2011). https://doi.org/10.2174/157341311795542507

    Article  CAS  Google Scholar 

  49. Cirillo, G., Iemma, F., Puoci, F., Parisi, O.I., Curcio, M., Spizzirri, U.G., Picci, N.: Imprinted hydrophilic nanospheres as drug delivery systems for 5-fluorouracil sustained release. J. Drug Target 17, 72–77 (2009). https://doi.org/10.1080/10611860802455813

    Article  CAS  Google Scholar 

  50. Gomez, C., Benito, M., Katime, I., Teijon, J.M., Blanco, M.D.: In vitro transdermal and biological evaluation of ALA-loaded poly(N-isopropylacrylamide) and poly(N-isopropylacrylamideco-acrylic acid) microgels for photodynamic therapy. J. Microencapsul. 29, 626–635 (2012). https://doi.org/10.3109/02652048.2012.676091

    Article  CAS  Google Scholar 

  51. Soni, K.S., Desale, S.S., Bronich, T.K.: Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Controll. Rel., 1–14 (2015). https://doi.org/10.1016/j.jconrel.2015.11.009

  52. Rolland, J.P., Maynor, B.W., Euliss, L.E., Exner, A.E., Denison, G.M., DeSimone, J.M.: Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127(28), 10096–10100 (2005). https://doi.org/10.1021/ja051977c

    Article  CAS  Google Scholar 

  53. Morimoto, N., Qiu, X.P., Winnik, F.M., Akiyoshi, K.: Dual stimuli-responsive nanogels by self-assembly of polysaccharides lightly Grafted with thiol-terminated poly(N-isopropylacrylamide) chains. Macromolecules 41, 5985–5987 (2008). https://doi.org/10.1021/ma801332x

    Article  CAS  Google Scholar 

  54. Rijcken, C.J., Soga, O., Hennink, W.E., van Nostrum, C.F.: Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery. J. Control Rel. 120(3), 131–148 (2007). https://doi.org/10.1016/j.jconrel.2007.03.023

    Article  CAS  Google Scholar 

  55. Yin, Q.Q., Wu, L., Gou, M.L., Qian, Z.Y., Zhang, W.S., Liu, J.: Long-lasting infiltration anaesthesia by lidocaine-loaded biodegradable nanoparticles in hydrogel in rats. Acta Anaesthesiol. Scand. 53(9), 1207–1213 (2009). https://doi.org/10.1111/j.1399-6576.2009.02030.x

    Article  CAS  Google Scholar 

  56. Ikeda, K., Okada, T., Sawada, S., Akiyoshi, K., Matsuzaki, K.: Inhibition of the formation of amyloid beta-protein fibrils using biocompatible nanogels as artificial chaperones. FEBS Lett. 580(28–29), 6587–6595 (2006). https://doi.org/10.1016/j.febslet.2006.11.009

    Article  CAS  Google Scholar 

  57. Lee, J.I., Kim, H.S., Yoo, H.S.: DNA nanogels composed of chitosan and Pluronic with thermo-sensitive and photo-crosslinking properties. Int. J. Pharm. 373(1–2), 93–99 (2009). https://doi.org/10.1016/j.ijpharm.2009.01.016

    Article  CAS  Google Scholar 

  58. Vinogradov, S.V., Bronich, T.K., Kabanov, A.V.: Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev. 54(1), 135–147 (2002). https://doi.org/10.1016/s0169-409x(01)00245-9

    Article  CAS  Google Scholar 

  59. Schmitt, F., Lagopoulos, L., Käuper, P., Rossi, N., Busso, N., Barge, J., Wagnières, G., Laue, C., Wandrey, C., Juillerat-Jeanneret, L.: Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. J. Control Rel. 144(2), 242–250 (2010). https://doi.org/10.1016/j.jconrel.2010.02.008

    Article  CAS  Google Scholar 

  60. Miyazaki, S., Aoyama, H., Kawasaki, N., Kubo, W., Attwood, D.: In situ-gelling gellan formulations as vehicles for oral drug delivery. J. Control Rel. 60(2–3), 287–295 (1999). https://doi.org/10.1016/s0168-3659(99)00084-x

    Article  CAS  Google Scholar 

  61. Bajpai, V.: In situ gel nasal drug delivery system-a review. Int. J. Pharm. Sci. 4(3), 577–580 (2014)

    Google Scholar 

  62. Cho, E., Gwak, H., Chun, I.: Formulation and evaluation of ondansetron nasal delivery systems. Int. J. Pharm. 349(1–2), 101–107 (2008). https://doi.org/10.1016/j.ijpharm.2007.07.028

    Article  CAS  Google Scholar 

  63. Hosny, E.A., Elkheshen, S.A., Saleh, S.I.: Buccoadhesive tablets for insulin delivery: in-vitro and in-vivo studies. Boll. Chim. Farm. 141(3), 210–217 (2002)

    CAS  Google Scholar 

  64. Makwana, S.B., Patel, V.A., Parmar, S.J.: Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma. Sci. 6, 1–6 (2015). https://doi.org/10.1016/j.rinphs.2015.06.001

    Article  Google Scholar 

  65. Miyazaki, S., Suzuki, S., Kawasaki, N., Endo, K., Takahashi, A., Attwood, D.: In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int. J. Pharm. 229, 29–36 (2001). https://doi.org/10.1016/s0378-5173(01)00825-0

    Article  CAS  Google Scholar 

  66. Clark, A.H.: Biopolymer gels. Curr. Opin. Colloid Int. Sci. 1, 712–717 (1996). https://doi.org/10.1016/S1359-0294(96)80072-0

    Article  CAS  Google Scholar 

  67. Stading, M., Langton, M., Hermansson, A.M.: Small and large deformation studies of protein gels. J. Rheol. 39, 1445–1450 (1995). https://doi.org/10.1122/1.550646

    Article  CAS  Google Scholar 

  68. Mishra, S., Thombare, N., Ali, M., Swami, S.: Applications of biopolymeric gels in agricultural sector. In: Vijay Kumar, T., Manju Kumari, T., Stefan Ioan, V. (eds.) Polymer Gels. Springer Publicaton, pp. 185–228 (2018)

    Google Scholar 

  69. Silva, K.C.G., Sato, A.C.K.: Biopolymer gels containing fructooligosaccharides. Food Res. Int. 101, 88–95 (2017). https://doi.org/10.1016/j.foodres.2017.08.042

    Article  CAS  Google Scholar 

  70. Buruiana, L.I., Ioan, S.: Polymer gel composites for bio applications. In: Vijay Kumar, T., Manju Kumari, T., Stefan Ioan, V. (eds.) Polymer Gels. Springer Publicaton, pp. 111–123 (2018)

    Google Scholar 

  71. Pandey, S., Senthilguru, K., Uvanesh, K., Sagiri, S.S., Behera, B., Babu, N., Bhattacharyya, M.K., Banerjee, P.K.: Natural gum modified emulsion gel as single carrier for the oral delivery of probiotic-drug combination. Int. J. Biol. Macromol. 92, 504–514 (2016). https://doi.org/10.1016/j.ijbiomac.2016.07.053

  72. Bhowmik, M., Kumari, P., Sarkar, G., Bain, M.K., Bhowmick, B., Mollick, M.M., Mondal, D., Maity D., Rana, D., Bhattacharjee, D., Chattopadhyay, D.: Effect of xanthan gum and guar gum on in situ gelling ophthalmic drug delivery system based on poloxamer-407. Int. J. Biol. Macromol. 62, 117–123 (2013). https://doi.org/10.1016/j.ijbiomac.2013.08.024

  73. Wang, G.H., Zhang, L.M.: Manipulating formation and drug-release behavior of new sol-gel silica matrix by hydroxypropyl guar gum. J. Phys. Chem. B 111(36), 10665–10670 (2007). https://doi.org/10.1021/jp070370a

    Article  CAS  Google Scholar 

  74. Hsu, C.S., Block, L.H.: Anionic gels as vehicles for electrically-modulated drug delivery. I. Solvent and drug transport phenomena. Pharm. Res. 13(12), 1865–1870 (1996). https://doi.org/10.1023/a:1016045427545

  75. Samia, O., Hanan, R., el Kamal, T.: Carbamazepine mucoadhesive nanoemulgel (MNEG) as brain targeting delivery system via the olfactory mucosa. Drug Deliv. 19(1), 58–67 (2012). https://doi.org/10.3109/10717544.2011.644349

    Article  CAS  Google Scholar 

  76. Gupta, R., Pandit, N., Aggarwal, S., Verma, A.: Comparative evaluation of subgingivally delivered 10% doxycycline hyclate and xanthan-based chlorhexidine gels in the treatment of chronic periodontitis. J. Contemp. Dent. Pract. 9(7), 25–32 (2008) (PMID: 18997913)

    Article  Google Scholar 

  77. Pongjanyakul, T., Puttipipatkhachorn, S.: Xanthan-alginate composite gel beads: molecular interaction and in vitro characterization. Int. J. Pharm. 331(1), 61–71 (2007). https://doi.org/10.1016/j.ijpharm.2006.09.011

    Article  CAS  Google Scholar 

  78. Horvat, G., Xhanari, K., Finšgar, M., Gradišnik, L., Maver, U., Knez, Ž., Novak, Z.: Novel ethanol-induced pectin-xanthan aerogel coatings for orthopedic applications. Carbohydr. Polym. 166, 365–376 (2017). https://doi.org/10.1016/j.carbpol.2017.03.008

    Article  CAS  Google Scholar 

  79. Paul, A., Fathima, K.M., Nair, S.C.: Intra nasal in situ gelling system of lamotrigine using ion activated mucoadhesive polymer. Open Med. Chem. J. 11, 222–244 (2017). https://doi.org/10.2174/1874104501711010222

    Article  CAS  Google Scholar 

  80. Bertram, U., Bodmeier, R.: In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form. Eur. J. Pharm. Sci. 27(1), 62–71 (2006). https://doi.org/10.1016/j.ejps.2005.08.005

    Article  CAS  Google Scholar 

  81. Coviello, T., Trotta, A.M., Marianecci, C., Carafa, M., Di Marzio, L., Rinaldi, F., Di Meo, C., Alhaique, F., Matricardi, P.: Gel-embedded niosomes: preparation, characterization and release studies of a new system for topical drug delivery. Colloids Surf. B Biointerf. 125, 291–299 (2015). https://doi.org/10.1016/j.colsurfb.2014.10.060

    Article  CAS  Google Scholar 

  82. Sherafudeen, S.P., Vasantha, P.V.: Development and evaluation of in situ nasal gel formulations of loratadine. Res. Pharm. Sci. 10(6), 466–476 (2015)

    Google Scholar 

  83. Shinde, U.A., Modani, S.H., Singh, K.H.: Design and development of repaglinide microemulsion gel for transdermal delivery. AAPS Pharm. Sci. Tech. 19(1), 315–325 (2018). https://doi.org/10.1208/s12249-017-0811-4

    Article  CAS  Google Scholar 

  84. Phaechamud, T., Senarat, S., Puyathorn, N., Praphanwittaya, P.: Solvent exchange and drug release characteristics of doxycycline hyclate-loaded bleached shellac in situ-forming gel and-microparticle. Int. J. Biol. Macromol. 135, 1261–1272 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.098

    Article  CAS  Google Scholar 

  85. Srichan, T., Phaechamud, T.: Designing solvent exchange-induced in situ forming gel from aqueous insoluble polymers as matrix base for periodontitis treatment. AAPS Pharm. Sci. Tech. 18(1), 194–201 (2017). https://doi.org/10.1208/s12249-016-0507-1

    Article  CAS  Google Scholar 

  86. Patel, A.R., Dewettinck, K.: Comparative evaluation of structured oil systems: shellac oleogel, HPMC oleogel, and HIPE gel. Eur. J. Lipid. Sci. Technol. 117(11), 1772–1781 (2015). https://doi.org/10.1002/ejlt.201400553

    Article  CAS  Google Scholar 

  87. Rodríguez-Dorado, R., López-Iglesias, C., García-González, C.A., Auriemma, G., Aquino, R.P., Del Gaudio, P.: Design of aerogels, cryogels and xerogels of alginate: effect of molecular weight, gelation conditions and drying method on particles’ micromeritics. Molecules 24(6), 1049 (2019). https://doi.org/10.3390/molecules24061049

    Article  CAS  Google Scholar 

  88. Veres, P., Sebők, D., Dékány, I., Gurikov, P., Smirnova, I., Fábián, I., Kalmár, J.: A redox strategy to tailor the release properties of Fe(III)-alginate aerogels for oral drug delivery. Carbohydr. Polym. 188, 159–167 (2018). https://doi.org/10.1016/j.carbpol.2018.01.098

    Article  CAS  Google Scholar 

  89. Gonçalves, V.S., Gurikov, P., Poejo, J., Matias, A.A., Heinrich, S., Duarte, C.M., Smirnova, I.: Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur. J. Pharm. Biopharm. 107, 160–170 (2016). https://doi.org/10.1016/j.ejpb.2016.07.003

    Article  CAS  Google Scholar 

  90. García-González, C.A., Jin, M., Gerth, J., Alvarez-Lorenzo, C., Smirnova, I.: Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr. Polym. 117, 797–806 (2015). https://doi.org/10.1016/j.carbpol.2014.10.045

    Article  CAS  Google Scholar 

  91. Ilka, R., Mohseni, M., Kianirad, M., Naseripour, M., Ashtari, K., Mehravi, B.: Nanogel-based natural polymers as smart carriers for the controlled delivery of timolol maleate through the cornea for glaucoma. Int. J. Biol. Macromol. 109, 955–962 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.090

    Article  CAS  Google Scholar 

  92. Peng, N., Ding, X., Wang, Z., Cheng, Y., Gong, Z., Xu, X., Gao, X., Cai, Q., Huang, S., Liu, Y.: Novel dual responsive alginate-based magnetic nanogels for onco-theranostics. Carbohydr. Polym. 204, 32–41 (2019). https://doi.org/10.1016/j.carbpol.2018.09.084

    Article  CAS  Google Scholar 

  93. Hong, S.H., Li, Y., Eom, J.B., Choi, Y.: Responsive alginate-cisplatin nanogels for selective imaging and combined chemo/radio therapy of proliferating macrophages. Quant. Imag. Med. Surg. 8(8), 733–742 (2018). https://doi.org/10.21037/qims.2018.09.01

    Article  Google Scholar 

  94. Xu, X., Wang, X., Luo, W., Qian, Q., Li, Q., Han, B., Li, Y.: Triple cell-responsive nanogels for delivery of drug into cancer cells. Colloids Surf. B Biointerf. 163, 362–368 (2018). https://doi.org/10.1016/j.colsurfb.2017.12.047

    Article  CAS  Google Scholar 

  95. Ji, P., Zhou, B., Zhan, Y., Wang, Y., Zhang, Y., Li, Y., He, P.: Multistimulative nanogels with enhanced thermosensitivity for intracellular therapeutic delivery. ACS Appl. Mater, Interf. 9(45), 39143–39151 (2017). https://doi.org/10.1021/acsami.7b08209

    Article  CAS  Google Scholar 

  96. Wu, S.Y., Debele, T.A., Kao, Y.C., Tsai, H.C.: Synthesis and characterization of dual-sensitive fluorescent nanogels for enhancing drug delivery and tracking intracellular drug delivery. Int. J. Mol. Sci. 18(5), 1090 (2017). https://doi.org/10.3390/ijms18051090

    Article  CAS  Google Scholar 

  97. Maciel, D., Figueira, P., Xiao, S., Hu, D., Shi, X., Rodrigues, J., Tomás, H., Li, Y.: Redox-responsive alginate nanogels with enhanced anticancer cytotoxicity. Biomacromol 14(9), 3140–3146 (2013). https://doi.org/10.1021/bm400768m

    Article  CAS  Google Scholar 

  98. Hosseinifar, T., Sheybani, S., Abdouss, M., Hassani Najafabadi, S.A., Shafiee, A.M.: Pressure responsive nanogel base on alginate-cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery. J. Biomed. Mater. Res. A 106(2), 349–359 (2018). https://doi.org/10.1002/jbm.a.36242

    Article  CAS  Google Scholar 

  99. Sarika, P.R., Anil Kumar, P.R., Raj, D.K., James, N.R.: Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization. Carbohydr. Polym. 119, 118–125 (2015). https://doi.org/10.1016/j.carbpol.2014.11.037

    Article  CAS  Google Scholar 

  100. Sarika, P.R., James, N.R., Anil Kumar, P.R., Raj, D.K.: Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde-gelatin nanogels. Mater. Sci. Eng. C Mater. Biol. Appl. 68, 251–257 (2016). https://doi.org/10.1016/j.msec.2016.05.046

  101. Bazban-Shotorbani, S., Dashtimoghadam, E., Karkhaneh, A., Hasani-Sadrabadi, M.M., Jacob, K.I.: Microfluidic directed synthesis of alginate nanogels with tunable pore size for efficient protein delivery. Langmuir 32(19), 4996–5003 (2016). https://doi.org/10.1021/acs.langmuir.5b04645

    Article  CAS  Google Scholar 

  102. Hong, J.S., Vreeland, W.N., Lacerda, S.H., Locascio, L.E., Gaitan, M., Raghavan, S.R.: Liposome-templated supramolecular assembly of responsive alginate nanogels. Langmuir 24(8), 4092–4096 (2008). https://doi.org/10.1021/la7031219

    Article  CAS  Google Scholar 

  103. Honardar, S., Kordestani, S.S., Daliri, M., NayebHabib, F.: The effect of chitosan-based gel on second degree burn wounds. J. Wound Care 25(8), 488–494 (2016). https://doi.org/10.12968/jowc.2016.25.8.488

    Article  CAS  Google Scholar 

  104. Balakrishnan, B., Soman, D., Payanam, U., Laurent, A., Labarre, D., Jayakrishnan, A.: A novel injectable tissue adhesive based on oxidized dextran and chitosan. Acta Biomater. 53, 343–354 (2017). https://doi.org/10.1016/j.actbio.2017.01.065

    Article  CAS  Google Scholar 

  105. Yao, Y., Xia, M., Wang, H., Li, G., Shen, H., Ji, G., Meng, Q., Xie, Y.: Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin. Eur. J. Pharm. Sci. 25(91), 144–153 (2016). https://doi.org/10.1016/j.ejps.2016.06.014

    Article  CAS  Google Scholar 

  106. Senyiğit, Z.A., Karavana, S.Y., Eraç, B., Gürsel, O., Limoncu, M.H., Baloğlu, E.: Evaluation of chitosan based vaginal bioadhesive gel formulations for antifungal drugs. Acta Pharm. 64(2), 139–156 (2014). https://doi.org/10.2478/acph-2014-0013

    Article  CAS  Google Scholar 

  107. Oh, D.W., Kang, J.H., Lee, H.J., Han, S.D., Kang, M.H., Kwon, Y.H., Jun, J.H., Kim, D.W., Rhee, Y.S., Kim, J.Y., Park, E.S., Park, C.W.: Formulation and in vitro/in vivo evaluation of chitosan-based film forming gel containing ketoprofen. Drug Deliv. 24(1), 1056–1066 (2017). https://doi.org/10.1080/10717544.2017.1346001

    Article  CAS  Google Scholar 

  108. Kim, J.Y., Jun, J.H., Kim, S.J., Hwang, K.M., Choi, S.R., Han, S.D., Son, M.W., Park, E.S.: Wound healing efficacy of a chitosan-based film-forming gel containing tyrothricin in various rat wound models. Arch. Pharm. Res. 38(2), 229–238 (2015). https://doi.org/10.1007/s12272-014-0368-7

    Article  CAS  Google Scholar 

  109. Garcia, M., de Paula Freitas, C., Graciano, T.B., Coutinho, T.S., Cressoni, C.B., de Lima Pereira, S.A., Shimano, M.M.: Chitosan-based mucoadhesive gel for oral mucosal toluidine blue O delivery: The influence of a non-ionic surfactant. Photodiagnosis Photodyn. Ther. 20, 48–54 (2017). https://doi.org/10.1016/j.pdpdt.2017.08.009

    Article  CAS  Google Scholar 

  110. Thomas, L., Zakir, F., Mirza, M.A., Anwer, M.K., Ahmad, F.J., Iqbal, Z.: Development of curcumin loaded chitosan polymer based nanoemulsion gel: In vitro, ex vivo evaluation and in vivo wound healing studies. Int. J. Biol. Macromol. 101, 569–579 (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.066

    Article  CAS  Google Scholar 

  111. Hoseinpour Najar, M., Minaiyan, M., Taheri, A.: Preparation and in vivo evaluation of a novel gel-based wound dressing using arginine-alginate surface-modified chitosan nanofibers. J. Biomater. Appl. 32(6), 689–701 (2018). https://doi.org/10.1177/0885328217739562

    Article  CAS  Google Scholar 

  112. Nithya, S., Nimal, T.R., Baranwal, G., Suresh, M.K., Anil Kumar, C.P.A., Gopi, V., Mohan, C., Jayakumar, R., Biswas, R.: Preparation, characterization and efficacy of lysostaphin-chitosan gel against Staphylococcus aureus. Int. J. Biol. Macromol. 2018110, 157–166. https://doi.org/10.1016/j.ijbiomac.2018.01.083

  113. Ajish, J.K., Ajish Kumar, K.S., Chattopadhyay, S., Kumar, M.: Glycopolymeric gel stabilized N-succinyl chitosan beads for controlled doxorubicin delivery. Carbohydr. Polym. 144, 98–105 (2016). https://doi.org/10.1016/j.carbpol.2016.01.067

    Article  CAS  Google Scholar 

  114. Sohrabi, S., Haeri, A., Mahboubi, A., Mortazavi, A., Dadashzadeh, S.: Chitosan gel-embedded moxifloxacin niosomes: an efficient antimicrobial hybrid system for burn infection. Int. J. Biol. Macromol. 85, 625–633 (2016). https://doi.org/10.1016/j.ijbiomac.2016.01.013

    Article  CAS  Google Scholar 

  115. Frank, L.A., Sandri, G., D'Autilia, F., Contri, R.V., Bonferoni, M.C., Caramella, C., Frank, A.G., Pohlmann, A.R., Guterres, S.S.: Chitosan gel containing polymeric nanocapsules: a new formulation for vaginal drug delivery. Int. J. Nanomed. 9, 3151–3161 (2014). Published 2014 June 28. https://doi.org/10.2147/IJN.S62599

  116. Morán, M.C., Jorge, A.F., Vinardell, M.P.: Sustainable DNA release from chitosan/protein based-DNA gel particles. Biomacromol 15(11), 3953–3964 (2014). https://doi.org/10.1021/bm501039g

    Article  CAS  Google Scholar 

  117. Johnston, T.P., Miller, S.C.: Inulin disposition following intramuscular administration of an inulin/poloxamer gel matrix. J. Parenter Sci. Technol. 43(6), 279–286 (1989)

    CAS  Google Scholar 

  118. Carrera, G.V.S.M., Raymundo, A., Fernandes, F.M.B., Jordão, N., Sousa, I., da Ponte, M.N., Branco, L.C.: Tetramethylguanidine-based gels and colloids of cellulose. Carbohydr. Polym. 169, 58–64 (2017). https://doi.org/10.1016/j.carbpol.2017.03.084

    Article  CAS  Google Scholar 

  119. Demilecamps, A., Beauger, C., Hildenbrand, C., Rigacci, A., Budtova, T.: Cellulose-silica aerogels. Carbohydr. Polym. 122, 293–300 (2015). https://doi.org/10.1016/j.carbpol.2015.01.022

    Article  CAS  Google Scholar 

  120. Rai, V.K., Yadav, N.P., Sinha, P., Mishra, N., Luqman, S., Dwivedi, H., Kymonil, K.M., Saraf, S.A.: Development of cellulosic polymer based gel of novel ternary mixture of miconazole nitrate for buccal delivery. Carbohydr Polym. 103, 126–133 (2014). https://doi.org/10.1016/j.carbpol.2013.12.019

    Article  CAS  Google Scholar 

  121. Keshavarz, M., Kaffashi, B.: The ability of retention, drug release and rheological properties of nanogel bioadhesives based on cellulose derivatives. Pharm. Dev. Technol. 19(8), 952–959 (2014). https://doi.org/10.3109/10837450.2013.846371

    Article  CAS  Google Scholar 

  122. Martins, M.L., Calabresi, M.F., Quini, C., Matos, J.F., Miranda, J.R., Saeki, M.J., Bordallo, H.N.: Enhancing the versatility of alternate current biosusceptometry (ACB) through the synthesis of a dextrose-modified tracer and a magnetic muco-adhesive cellulose gel. Mater. Sci. Eng. C Mater. Biol. Appl. 48, 80–85 (2015). https://doi.org/10.1016/j.msec.2014.11.059

    Article  CAS  Google Scholar 

  123. Celebi, D., Guy, R.H., Edler, K.J., Scott, J.L.: Ibuprofen delivery into and through the skin from novel oxidized cellulose-based gels and conventional topical formulations. Int. J. Pharm. 514(1), 238–243 (2016). https://doi.org/10.1016/j.ijpharm.2016.09.028

    Article  CAS  Google Scholar 

  124. Schestakow, M., Karadagli, I., Ratke, L.: Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt. Carbohydr. Polym. 137, 642–649 (2016). https://doi.org/10.1016/j.carbpol.2015.10.097

    Article  CAS  Google Scholar 

  125. Ji, J.A., Ingham, E., Wang, J.Y.: Effect of EDTA and methionine on preventing loss of viscosity of cellulose-based topical gel. AAPS Pharm. Sci. Tech. 10(2), 678–683 (2009). https://doi.org/10.1208/s12249-009-9258-6

    Article  CAS  Google Scholar 

  126. Kim, U.J., Kuga, S.: Ion-exchange separation of proteins by polyallylamine-grafted cellulose gel. J. Chromatogr. A 955(2), 191–196 (2002). https://doi.org/10.1016/s0021-9673(02)00246-7

    Article  CAS  Google Scholar 

  127. Gallego, R., Arteaga, J.F., Valencia, C., Franco, J.M.: Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels. Carbohydr. Polym. 98(1), 152–160 (2013). https://doi.org/10.1016/j.carbpol.2013.04.104

    Article  CAS  Google Scholar 

  128. Calejo, M.T., Cardoso, A.M., Marques, E.F., Araújo, M.J., Kjøniksen, A.L., Sande, S.A., de Lima, M.C., Jurado, A.S., Nyström, B.: In vitro cytotoxicity of a thermoresponsive gel system combining ethyl(hydroxyethyl) cellulose and lysine-based surfactants. Colloids Surf. B Biointerf. 102, 682–686 (2013). https://doi.org/10.1016/j.colsurfb.2012.09.033

    Article  CAS  Google Scholar 

  129. Van Damme, L., Govinden, R., Mirembe, F.M., Guédou, F., Solomon, S., Becker, M.L., Pradeep, B.S., Krishnan, A.K., Alary, M., Pande, B., Ramjee, G., Deese, J., Crucitti, T., Taylor, D.: CS study group. Lack of effectiveness of cellulose sulfate gel for the prevention of vaginal HIV transmission [published correction appears in N. Engl. J. Med. 359(8), 877, 2008 Aug 21]. N. Engl. J. Med. 359(5), 463–472 (2008). https://doi.org/10.1056/NEJMoa0707957

  130. Hauptstein, S., Hintzen, F., Müller, C., Ohm, M., Bernkop-Schnürch, A.: Development and in vitro evaluation of a buccal drug delivery system based on preactivated thiolated pectin. Drug Dev. Ind. Pharm. 40(11), 1530–1537 (2014). https://doi.org/10.3109/03639045.2013.836213

    Article  CAS  Google Scholar 

  131. Günter, E.A., Markov, P.A., Melekhin, A.K., Belozerov, V.S., Martinson, E.A., Litvinets, S.G., Popov, S.V.: Preparation and release characteristics of mesalazine loaded calcium pectin-silica gel beads based on callus cultures pectins for colon-targeted drug delivery. Int. J. Biol. Macromol. 120(Pt B), 2225–2233 (2018). https://doi.org/10.1016/j.ijbiomac.2018.07.078

    Article  CAS  Google Scholar 

  132. Gunter, E.A., Melekhin, A.K.: Prikl Biokhim Mikrobiol. 51(1), 59–64 (2015). https://doi.org/10.7868/s0555109915010055

    Article  CAS  Google Scholar 

  133. Liu, J., Zhang, L., Jia, Y., Hu, W., Zhang, J., Jiang, H.: Preparation and evaluation of pectin-based colon-specific pulsatile capsule in vitro and in vivo. Arch. Pharm. Res. 35(11), 1927–1934 (2012). https://doi.org/10.1007/s12272-012-1109-4

    Article  CAS  Google Scholar 

  134. Preibisch, I., Niemeyer, P., Yusufoglu, Y., Gurikov, P., Milow, B., Smirnova, I.: Polysaccharide-based aerogel bead production via jet cutting method. Materials (Basel) 11(8), 1287 (2018). https://doi.org/10.3390/ma11081287

    Article  CAS  Google Scholar 

  135. El-Gibaly, I.: Oral delayed-release system based on Zn-pectinate gel (ZPG) microparticles as an alternative carrier to calcium pectinate beads for colonic drug delivery. Int. J. Pharm. 232(1–2), 199–211 (2002). https://doi.org/10.1016/s0378-5173(01)00903-6

    Article  CAS  Google Scholar 

  136. Yu, L.L., Jiang, L.N., Wang, S.Y., Sun, M.M., Li, D.Q., Du, G.M.: Pectin microgel particles as high adsorption rate material for methylene blue: Performance, equilibrium, kinetic, mechanism and regeneration studies. Int. J. Biol. Macromol. 112, 383–389 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.193

    Article  CAS  Google Scholar 

  137. Chen, K., Zhang, H.: Alginate/pectin aerogel microspheres for controlled release of proanthocyanidins. Int. J. Biol. Macromol. 136, 936–943 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.138

    Article  CAS  Google Scholar 

  138. Günter, E.A., Popeyko, O.V., Istomina, E.I.: Encapsulated drug system based on the gels obtained from callus cultures modified pectins. J. Biotechnol. 289, 7–14 (2019). https://doi.org/10.1016/j.jbiotec.2018.11.005

    Article  CAS  Google Scholar 

  139. Chen, H., Gan, J., Ji, A., Song, S., Yin, L.: Development of double network gels based on soy protein isolate and sugar beet pectin induced by thermal treatment and laccase catalysis. Food Chem. 292, 188–196 (2019). https://doi.org/10.1016/j.foodchem.2019.04.059

    Article  CAS  Google Scholar 

  140. Sriamornsak, P., Asavapichayont, P., Nunthanid, J., Luangtana-Anan, M., Limmatvapirat, S., Piriyaprasarth, S.: Wax-incorporated emulsion gel beads of calcium pectinate for intragastric floating drug delivery. AAPS Pharm. Sci. Tech. 9(2), 571–576 (2008). https://doi.org/10.1208/s12249-008-9082-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Maity .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirtania, M.D., Kahali, N., Maity, A. (2020). Biopolymeric Gels in Drug Delivery. In: Nayak, A., Hasnain, M. (eds) Advanced Biopolymeric Systems for Drug Delivery. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-46923-8_3

Download citation

Publish with us

Policies and ethics