Skip to main content

Biomechanics and Stress Fractures: Utility of Running Gait Analysis

  • Chapter
  • First Online:
Stress Fractures in Athletes
  • 803 Accesses

Abstract

Bone stress injury is common in active populations and can be a significant barrier to a healthy lifestyle. Optimal training regimens that maximize osteogenic potential while minimizing fatigue damage remain ideal but remain elusive. Examining evidence related to the complex etiology of bone stress injury reveals key factors associated with injury. Biomechanical factors, specifically bone stress and strain, are introduced as proximate causes of injury. Key components of bone stress and strain are introduced and discussed. Targets for intervention are identified with emphasis on bone strength, load management, and running mechanics. Because each individual with bone stress injury has a unique presentation, clinicians need to fully examine the web of determinants that interact to influence bone-specific load and load capacity and direct personalized interventions accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meeuwisse WH, Tyreman H, Hagel B, et al. A dynamic model of etiology in sport injury: the recursive nature of risk and causation. Clin J Sport Med. 2007;17(3):215–9.

    PubMed  Google Scholar 

  2. Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone. 1998;23(5):399–407.

    CAS  PubMed  Google Scholar 

  3. Burr DB, Martin RB, Schaffler MB, et al. Bone remodeling in response to in vivo fatigue microdamage. J Biomech. 1985;18(3):189–200.

    CAS  PubMed  Google Scholar 

  4. Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev. 2003;31(1):45–50.

    PubMed  Google Scholar 

  5. Burr DB, Milgrom C, Fyhrie D, et al. In vivo measurement of human tibial strains during vigorous activity. Bone. 1996;18(5):405–10.

    CAS  PubMed  Google Scholar 

  6. Fyhrie DP, Milgrom C, Hoshaw SJ, et al. Effect of fatiguing exercise on longitudinal bone strain as related to stress fracture in humans. Ann Biomed Eng. 1998;26(4):660–5.

    CAS  PubMed  Google Scholar 

  7. Milgrom C, Radeva-Petrova DR, Finestone A, et al. The effect of muscle fatigue on in vivo tibial strains. J Biomech. 2007;40(4):845–50.

    PubMed  Google Scholar 

  8. Milgrom C, Finestone A, Levi Y, et al. Do high impact exercises produce higher tibial strains than running? Br J Sports Med. 2000;34(3):195–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Milgrom C, Finestone A, Simkin A, et al. In vivo strain measurements to evaluate the strengthening potential of exercises on the tibial bone. J Bone Jt Surg. 2000;82(4):591–4.

    CAS  Google Scholar 

  10. Milgrom C, Finestone A, Segev S, et al. Are overground or treadmill runners more likely to sustain tibial stress fracture? Br J Sports Med. 2003;37(2):160–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lanyon LE, Hampson WGJ, Goodship AE, et al. Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop Scand. 1975;46(2):256–68.

    CAS  PubMed  Google Scholar 

  12. Milgrom C, Miligram M, Simkin A, et al. A home exercise program for tibial bone strengthening based on in vivo strain measurements. Am J Phys Med Rehabil. 2001;80(6):433–8.

    CAS  PubMed  Google Scholar 

  13. Bayraktar HH, Morgan EF, Niebur GL, et al. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech. 2004;37(1):27–35.

    PubMed  Google Scholar 

  14. Guoping Li G, Shudong Zhang S, Gang Chen G, et al. Radiographic and histologic analyses of stress fracture in rabbit tibias. Am J Sports Med. 1985;13(5):285–94.

    Google Scholar 

  15. Burr DB, Milgrom C, Boyd RD, et al. Experimental stress fractures of the tibia. Biological and mechanical aetiology in rabbits. J Bone Jt Surg. 1990;72(3):370–5.

    CAS  Google Scholar 

  16. Martin B. Mathematical model for repair of fatigue damage and stress fracture in osteonal bone. J Orthop Res. 1995;13(3):309–16.

    CAS  PubMed  Google Scholar 

  17. Warden SJ, Burr DB, Brukner PD. Stress fractures: pathophysiology, epidemiology, and risk factors. Curr Osteoporos Rep. 2006;4(3):103–9.

    PubMed  Google Scholar 

  18. Nalla RK, Kinney JH, Ritchie RO. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater. 2003;2(3):164–8.

    CAS  PubMed  Google Scholar 

  19. Taylor D. How does bone break? Nat Mater. 2003;2(3):133–4.

    CAS  PubMed  Google Scholar 

  20. Rice H, Weir G, Trudeau MB, et al. Estimating tibial stress throughout the duration of a treadmill run. Med Sci Sport Exerc. 2019;51(11):2257–64.

    Google Scholar 

  21. Meardon SA, Derrick TR. Effect of step width manipulation on tibial stress during running. J Biomech. 2014;47(11):2738–44.

    PubMed  Google Scholar 

  22. Meardon SA, Willson JD, Gries SR, et al. Bone stress in runners with tibial stress fracture. Clin Biomech. 2015;30(9):895–902.

    Google Scholar 

  23. Vahdati A, Walscharts S, Jonkers I, et al. Role of subject-specific musculoskeletal loading on the prediction of bone density distribution in the proximal femur. J Mech Behav Biomed Mater. 2014;30:244–52.

    CAS  PubMed  Google Scholar 

  24. Firminger CR, Fung A, Loundagin LL, et al. Effects of footwear and stride length on metatarsal strains and failure in running. Clin Biomech. 2017;49:8–15.

    Google Scholar 

  25. Haider IT, Baggaley M, Edwards WB. Subject-specific finite element models of the tibia with realistic boundary conditions predict bending deformations consistent with in-vivo measurement. J Biomech Eng. 2019;142(2):10. https://doi.org/10.1115/1.4044034.

    Article  Google Scholar 

  26. Derrick TR, Edwards WB, Fellin RE, et al. An integrative modeling approach for the efficient estimation of cross sectional tibial stresses during locomotion. J Biomech. 2016;49(3):429–35.

    PubMed  Google Scholar 

  27. Meardon SA, Willson JD, Derrick TR, et al. Sex differences in distal tibial bone stress during running. In Proceedings of the 40th Annual Meeting of the American Society of Biomechanics 2016 [Online]. 2016.

    Google Scholar 

  28. Kourtis LC, Carter DR, Kesari H, et al. A new software tool (VA-BATTS) to calculate bending, axial, torsional and transverse shear stresses within bone cross sections having inhomogeneous material properties. Comput Methods Biomech Biomed Engin. 2008;11(5):463–76.

    PubMed  Google Scholar 

  29. Edwards WB, Taylor D, Rudolphi TJ, et al. Effects of stride length and running mileage on a probabilistic stress fracture model. Med Sci Sports Exerc. 2009;41(12):2177–84.

    PubMed  Google Scholar 

  30. Wang H, Dueball S. The effect of drop-landing height on tibia bone strain. J Biomed Sci Eng. 2017;10(01):10–20.

    CAS  Google Scholar 

  31. Chen TL, An WW, Chan ZYS, et al. Immediate effects of modified landing pattern on a probabilistic tibial stress fracture model in runners. Clin Biomech. 2016;33:49–54.

    CAS  Google Scholar 

  32. Xu C, Silder A, Zhang J, et al. A cross-sectional study of the effects of load carriage on running characteristics and tibial mechanical stress: implications for stress-fracture injuries in women. BMC Musculoskelet Disord. 2017;18(1):125.

    PubMed  PubMed Central  Google Scholar 

  33. Bertelsen ML, Hulme A, Petersen J, et al. A framework for the etiology of running-related injuries. Scand J Med Sci Sports. 2017;27(11):1170–80.

    CAS  PubMed  Google Scholar 

  34. Mueller MJ, Maluf KS. Tissue adaptation to physical stress: a proposed “Physical Stress Theory” to guide physical therapist practice, education, and research. Phys Ther. 2002;82(4):383.

    PubMed  Google Scholar 

  35. Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50(5):273–80.

    PubMed  Google Scholar 

  36. Malisoux L, Nielsen RO, Urhausen A, et al. A step towards understanding the mechanisms of running-related injuries. J Sci Med Sport. 2015;18(5):523–8.

    PubMed  Google Scholar 

  37. Schnackenburg KE, Macdonald HM, Ferber R, et al. Bone quality and muscle strength in female athletes with lower limb stress fractures. Med Sci Sports Exerc. 2011;43(11):2110–9.

    PubMed  Google Scholar 

  38. Franklyn M, Oakes B, Field B, et al. Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes. Am J Sports Med. 2008;36(6):1179–89.

    PubMed  Google Scholar 

  39. Popp KL, McDermott W, Hughes JM, et al. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history. Bone. 2017;94:22–8.

    PubMed  Google Scholar 

  40. Cronström A, Creaby MW, Nae J, et al. Gender differences in knee abduction during weight-bearing activities: a systematic review and meta-analysis. Gait Posture. 2016;49:315–28.

    PubMed  Google Scholar 

  41. Pohl MB, Mullineaux DR, Milner CE, et al. Biomechanical predictors of retrospective tibial stress fractures in runners. J Biomech. 2008;41(6):1160–5.

    PubMed  Google Scholar 

  42. Zadpoor AA, Nikooyan AA. The relationship between lower-extremity stress fractures and the ground reaction force: a systematic review. Clin Biomech (Bristol, Avon). 2011;26(1):23–8.

    Google Scholar 

  43. Creaby MW, Dixon SJ. External frontal plane loads may be associated with tibial stress fracture. Med Sci Sports Exerc. 2008;40(9):1669–74.

    PubMed  Google Scholar 

  44. Haris Phuah A, Schache AG, Crossley KM, et al. Sagittal plane bending moments acting on the lower leg during running. Gait Posture. 2010;31(2):218–22.

    PubMed  Google Scholar 

  45. Wentz L, Liu P-Y. Females have a greater incidence of stress fractures than males in both military and athletic populations: a systemic review. Mil Med. 2011;176(4):420–30.

    PubMed  Google Scholar 

  46. Popp KL, Hughes JM, Smock AJ, et al. Bone geometry, strength, and muscle size in runners with a history of stress fracture. Med Sci Sports Exerc. 2009;41(12):2145–50.

    PubMed  Google Scholar 

  47. Baptista F, Mil-Homens P, Carita AI, et al. Peak vertical jump power as a marker of bone health in children. Int J Sports Med. 2016;37(08):653–8.

    CAS  PubMed  Google Scholar 

  48. Belavý DL, Armbrecht G, Blenk T, et al. Greater association of peak neuromuscular performance with cortical bone geometry, bone mass and bone strength than bone density: a study in 417 older women. Bone. 2016;83:119–26.

    PubMed  Google Scholar 

  49. King M. The vertical jump test as a health promotion screening tool for predicting bone strength in young adults. Theses Dissertation, 2016.

    Google Scholar 

  50. Cosman F, Ruffing J, Zion M, et al. Determinants of stress fracture risk in United States Military Academy cadets. Bone. 2013;55(2):359–66.

    PubMed  Google Scholar 

  51. Carter DR, Hayes WC. Bone compressive strength: the influence of density and strain rate. Science. 1976;194(4270):1174–6.

    CAS  PubMed  Google Scholar 

  52. Bennell KL, Malcolm SA, Thomas SA, et al. Risk factors for stress fractures in track and field athletes: a twelve- month prospective study. Am J Sports Med. 1996;24(6):810–8.

    CAS  PubMed  Google Scholar 

  53. Wright AA, Taylor JB, Ford KR, et al. Risk factors associated with lower extremity stress fractures in runners: a systematic review with meta-analysis. Br J Sports Med. 2015;49(23):1517–23.

    PubMed  Google Scholar 

  54. Kelsey JL, Bachrach LK, Procter-Gray E, et al. Risk factors for stress fracture among young female cross-country runners. Med Sci Sports Exerc. 2007;39(9):1457–63.

    PubMed  Google Scholar 

  55. Barrack MT, Gibbs JC, De Souza MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58.

    PubMed  Google Scholar 

  56. Bittencourt NFN, Meeuwisse WH, Mendonça LD, et al. Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition - narrative review and new concept. Br J Sports Med. 2016;50(21):1309–14.

    CAS  PubMed  Google Scholar 

  57. Kraus E, Tenforde AS, Nattiv A, et al. Bone stress injuries in male distance runners: higher modified female athlete triad cumulative risk assessment scores predict increased rates of injury. Br J Sports Med. 2019;53(4):237–42.

    PubMed  Google Scholar 

  58. Tenforde AS, Carlson JL, Chang A, et al. Association of the Female Athlete Triad Risk Assessment Stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med. 2017;45(2):302–10.

    PubMed  Google Scholar 

  59. Robling AG, Hinant FM, Burr DB, et al. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17(8):1545–54.

    PubMed  Google Scholar 

  60. Milgrom C, Giladi M, Simkin A, et al. The area moment of inertia of the tibia: a risk factor for stress fractures. J Biomech. 1989;22(11–12):1243–8.

    CAS  PubMed  Google Scholar 

  61. Crossley K, Bennell KL, Wrigley T, et al. Ground reaction forces, bone characteristics, and tibial stress fracture in male runners. Med Sci Sports Exerc. 1999;31(8):1088–93.

    CAS  PubMed  Google Scholar 

  62. Farr JN, Lee VR, Blew RM, et al. Quantifying bone-relevant activity and its relation to bone strength in girls. Med Sci Sports Exerc. 2011;43(3):476–83.

    PubMed  PubMed Central  Google Scholar 

  63. Tenforde AS, Fredericson M. Influence of sports participation on bone health in the young athlete: a review of the literature. Phys Med Rehabil. 2011;3(9):861–7.

    Google Scholar 

  64. Tenforde AS, Lynn Sainani K, Carter Sayres L, et al. Participation in ball sports may represent a prehabilitation strategy to prevent future stress fractures and promote bone health in young athletes. PM R. 2015;7(2):222–5.

    PubMed  Google Scholar 

  65. Matheson GO, Clement DB, Mckenzie DC, et al. Stress fractures in athletes: a study of 320 cases. Am J Sports Med. 1987;15(1):46–58.

    CAS  PubMed  Google Scholar 

  66. Reinking MF, Austin TM, Richter RR, et al. Medial tibial stress syndrome in active individuals: a systematic review and meta-analysis of risk factors. Sports Health. 2017;9(3):252–61.

    PubMed  Google Scholar 

  67. Rauh MJ, Koepsell TD, Rivara FP, et al. Quadriceps angle and risk of injury among high school cross-country runners. J Orthop Sports Phys Ther. 2007;37(12):725–33.

    PubMed  Google Scholar 

  68. Hamstra-Wright KL, Bliven KCH, Bay C. Risk factors for medial tibial stress syndrome in physically active individuals such as runners and military personnel: a systematic review and meta-analysis. Br J Sports Med. 2015;49(6):362–9.

    PubMed  Google Scholar 

  69. Newman P, Witchalls J, Waddington G, et al. Risk factors associated with medial tibial stress syndrome in runners: a systematic review and meta-analysis. Open Access J Sport Med. 2013;4:229–41.

    Google Scholar 

  70. Yagi S, Muneta T, Sekiya I. Incidence and risk factors for medial tibial stress syndrome and tibial stress fracture in high school runners. Knee Surg Sports Traumatol Arthrosc. 2013;21(3):556–63.

    PubMed  Google Scholar 

  71. Hubbard TJ, Carpenter EM, Cordova ML, et al. Contributing factors to medial tibial stress syndrome: a prospective investigation. Med Sci Sports Exerc. 2009;41(3):490–6.

    PubMed  Google Scholar 

  72. Shaffer RA, Rauh MJ, Brodine SK, et al. Predictors of stress fracture susceptibility in young female recruits. Am J Sports Med. 2006;34(1):108–15.

    PubMed  Google Scholar 

  73. Rauh MJ, Koepsell TD, Rivara FP, et al. Epidemiology of musculoskeletal injuries among high school cross-country runners. Am J Epidemiol. 2006;163(2):151–9.

    PubMed  Google Scholar 

  74. Rauh MJ, Macera CA, Trone DW, et al. Selected static anatomic measures predict overuse injuries in female recruits. Mil Med. 2010;175(5):329–35.

    PubMed  Google Scholar 

  75. Brunet ME, Cook SD, Brinker MR, et al. A survey of running injuries in 1505 competitive and recreational runners. J Sports Med Phys Fitness. 1990;30(3):307–15.

    CAS  PubMed  Google Scholar 

  76. Rauh MJ. Leg-length inquality and running-related injury among high school runners. Int J Sports Phys Ther. 2018;13(4):643–51.

    PubMed  PubMed Central  Google Scholar 

  77. Giladi MI, Milgrom CH, Stein MI, Kashtan HA, Margulies JO, Chisin RO, Steinberg RAAZ. The low arch, a protective factor in stress fractures. A prospective study of 295 military recruits. Orthop Rev. 1985;14(11):709–12.

    Google Scholar 

  78. Simkin A, Leichter I, Giladi M, et al. Combined effect of foot arch structure and an orthotic device on stress fractures. Foot Ankle Int. 1989;10(1):25–9.

    CAS  Google Scholar 

  79. Moen MH, Bongers T, Bakker EW, et al. Risk factors and prognostic indicators for medial tibial stress syndrome. Scand J Med Sci Sports. 2012;22(1):34–9.

    CAS  PubMed  Google Scholar 

  80. Bennett JE, Reinking MF, Pluemer B, et al. Factors contributing to the development of medial tibial stress syndrome in high school runners. J Orthop Sport Phys Ther. 2001;31(9):504–10.

    CAS  Google Scholar 

  81. McPoil TG, Cornwall MW, Medoff L, et al. Arch height change during sit-to-stand: An alternative for the navicular drop test. J Foot Ankle Res. 2008;1(1):3.

    PubMed  PubMed Central  Google Scholar 

  82. Chuter VH. Janse de Jonge XAK. Proximal and distal contributions to lower extremity injury: a review of the literature. Gait Posture. 2012;36(1):7–15.

    PubMed  Google Scholar 

  83. Messier S, Pittala K. Etiologic factors associated with selected running injuries. Med Sci Sports Exerc. 1988;20(5):501–5.

    CAS  PubMed  Google Scholar 

  84. Dixon SJ, Creaby MW, Allsopp AJ. Comparison of static and dynamic biomechanical measures in military recruits with and without a history of third metatarsal stress fracture. Clin Biomech. 2006;21(4):412–9.

    Google Scholar 

  85. Milner CE, Hamill J, Davis IS. Distinct hip and rearfoot kinematics in female runners with a history of tibial stress fracture. J Orthop Sports Phys Ther. 2010;40(2):59–66.

    PubMed  Google Scholar 

  86. Kaufman KR, Brodine SK, Shaffer RA, et al. The effect of foot structure and range of motion on musculoskeletal overuse injuries. Am J Sports Med. 1999;27(5):585–93.

    CAS  PubMed  Google Scholar 

  87. Willems TM, De Clercq D, Delbaere K, et al. A prospective study of gait related risk factors for exercise-related lower leg pain. Gait Posture. 2006;23(1):91–8.

    CAS  PubMed  Google Scholar 

  88. Sharma J, Golby J, Greeves J, et al. Biomechanical and lifestyle risk factors for medial tibia stress syndrome in army recruits: a prospective study. Gait Posture. 2011;33(3):361–5.

    PubMed  Google Scholar 

  89. Queen RM, Abbey AN, Chuckpaiwong B, et al. Plantar loading comparisons between women with a history of second metatarsal stress fractures and normal controls. Am J Sports Med. 2009;37(2):390–5.

    PubMed  Google Scholar 

  90. Milner CE, Ferber R, Pollard CD, et al. Biomechanical factors associated with tibial stress fracture in female runners. Med Sci Sports Exerc. 2006;38(2):323–8.

    PubMed  Google Scholar 

  91. Hetsroni I, Finestone A, Milgrom C, et al. The role of foot pronation in the development of femoral and tibial stress fractures: a prospective biomechanical study. Clin J Sport Med. 2008;18(1):18–23.

    PubMed  Google Scholar 

  92. Munro CF, Miller DI, Fuglevand AJ. Ground reaction forces in running: a reexamination. J Biomech. 1987;20(2):147–55.

    CAS  PubMed  Google Scholar 

  93. Cavanagh PR, Lafortune MA. Ground reaction forces in distance running. J Biomech. 1980;13(5):397–406.

    CAS  PubMed  Google Scholar 

  94. Grimston SK, Engsberg JR, Kloiber R, et al. Bone mass, external loads, and stress-fracture in female runners. Int J Sport Biomech. 1991;7(3):293–302.

    Google Scholar 

  95. Zifchock RA, Davis I, Hamill J. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. J Biomech. 2006;39(15):2792–7.

    PubMed  Google Scholar 

  96. Bennell K, Crossley K, Jayarajan J, et al. Ground reaction forces and bone parameters in females with tibial stress fracture. Med Sci Sports Exerc. 2004;36(3):397–404.

    PubMed  Google Scholar 

  97. Crossley K, Bennell KL, Wrigley T, et al. Medicine & science in sports & exercise ground reaction forces, bone characteristics, and tibial stress fracture in male runners. Med Sci Sport Exerc. 1999;31(8):1088–93.

    CAS  Google Scholar 

  98. Bischof JE, Abbey AN, Chuckpaiwong B, et al. Three-dimensional ankle kinematics and kinetics during running in women. Gait Posture. 2010;31(4):502–5.

    PubMed  Google Scholar 

  99. Van Der Worp H, Vrielink JW, Bredeweg SW. Do runners who suffer injuries have higher vertical ground reaction forces than those who remain injury-free? A systematic review and meta-analysis. Br J Sports Med. 2016;50(8):450–7.

    PubMed  Google Scholar 

  100. Milner CE, Davis IS, Hamill J. Free moment as a predictor of tibial stress fracture in distance runners. J Biomech. 2006;39(15):2819–25.

    PubMed  Google Scholar 

  101. Bobbert MF, Schamhardt HC, Nigg BM. Calculation of vertical ground reaction force estimates during running from positional data. J Biomech. 1991;24(12):1095–105.

    CAS  PubMed  Google Scholar 

  102. Hamill J, Gruber AH. Is changing footstrike pattern beneficial to runners? J Sport Heal Sci. 2017;6(2):146–53.

    Google Scholar 

  103. Loundagin LL, Schmidt TA, Brent Edwards W. Mechanical fatigue of bovine cortical bone using ground reaction force waveforms in running. J Biomech Eng. 2018;140(3):0310031–5.

    PubMed Central  Google Scholar 

  104. Gruber AH, Edwards WB, Hamill J, et al. A comparison of the ground reaction force frequency content during rearfoot and non-rearfoot running patterns. Gait Posture. 2017;56:54–9.

    PubMed  Google Scholar 

  105. Scott SH, Winter DA. Internal forces of chronic running injury sites. Med Sci Sports Exerc. 1990;22(3):357–69.

    CAS  PubMed  Google Scholar 

  106. Brent Edwards W, Taylor D, Rudolphi TJ, et al. Effects of running speed on a probabilistic stress fracture model. Clin Biomech. 2010;25(4):372–7.

    Google Scholar 

  107. U.S. Dept. of Health and Human Services. Physical activity guidelines for Americans. 2nd ed. Washington, DC: U.S. Dept. of Health and Human Services; 2008.

    Google Scholar 

  108. Kohrt WM, Bloomfield SA, Little KD, et al. Physical activity and bone health. Med Sci Sport Exerc. 2004;36(11):1985–96.

    Google Scholar 

  109. Warden SJ, Davis IS, Fredericson M. Management and prevention of bone stress injuries in long-distance runners. J Orthop Sport Phys Ther. 2014;44(10):749–65.

    Google Scholar 

  110. Soligard T, Schwellnus M, Alonso JM, et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 2016;50(17):1030–41.

    PubMed  Google Scholar 

  111. Magness S, Ambegaonkar JP, Jones MT, et al. Lower extremity stress fracture in runners: risk factors and prevention. Int J Athl Ther Train. 2011;16(4):11–5.

    Google Scholar 

  112. Willy RW. Innovations and pitfalls in the use of wearable devices in the prevention and rehabilitation of running related injuries. Phys Ther Sport. 2018;29:26–33.

    PubMed  Google Scholar 

  113. Barton CJ, Bonanno DR, Carr J, et al. Running retraining to treat lower limb injuries: a mixed-methods study of current evidence synthesised with expert opinion. Br J Sports Med. 2016;50(9):513–26.

    CAS  PubMed  Google Scholar 

  114. Napier C, Cochrane CK, Taunton JE, et al. Gait modifications to change lower extremity gait biomechanics in runners: a systematic review. Br J Sports Med. 2015;49(21):1382–8.

    PubMed  Google Scholar 

  115. Baggaley M, Willy RW, Meardon SA. Primary and secondary effects of real-time feedback to reduce vertical loading rate during running. Scand J Med Sci Sports. 2017;27(5):501–7.

    CAS  PubMed  Google Scholar 

  116. Souza RB. An evidence-based videotaped running biomechanics analysis. Phys Med Rehabil Clin N Am. 2016;27(1):217–36.

    PubMed  Google Scholar 

  117. Pipkin A, Kotecki K, Hetzel S, et al. Reliability of a qualitative video analysis for running. J Orthop Sports Phys Ther. 2016;46(7):556–61.

    PubMed  Google Scholar 

  118. Reinking MF, Dugan L, Ripple N, et al. Reliabiltiy of two-dimensional video-based running gait analysis. Int J Sports Phys Ther. 2018;13(3):453–61.

    PubMed  PubMed Central  Google Scholar 

  119. Wille CM, Lenhart RL, Wang S, et al. Ability of sagittal kinematic variables to estimate ground reaction forces and joint kinetics in running. J Orthop Sports Phys Ther. 2014;44(10):825–30.

    PubMed  PubMed Central  Google Scholar 

  120. Teng HL, Powers CM. Influence of trunk posture on lower extremity energetics during running. Med Sci Sports Exerc. 2014;47(3):625–30.

    Google Scholar 

  121. Folland JP, Allen SJ, Black MI, et al. Running technique is an important component of running economy and performance. Med Sci Sports Exerc. 2017;49(7):1412–23.

    PubMed  PubMed Central  Google Scholar 

  122. Maykut JN, Taylor-Haas JA, Paterno MV, et al. Concurrent validity and reliability of 2d kinematic analysis of frontal plane motion during running. Int J Sports Phys Ther. 2015;10(2):136–46.

    PubMed  PubMed Central  Google Scholar 

  123. de Ruiter CJ, Verdijk PWL, Werker W, et al. Stride frequency in relation to oxygen consumption in experienced and novice runners. Eur J Sport Sci. 2014;14(3):251–8.

    PubMed  Google Scholar 

  124. Agresta C, Brown A. Gait retraining for injured and healthy runners using augmented feedback: a systematic literature review. J Orthop Sport Phys Ther. 2015;45(8):576–84.

    Google Scholar 

  125. Wulf G. Attentional focus and motor learning: a review of 15 years. Int Rev Sport Exerc Psychol. 2013;6(1):77–104.

    Google Scholar 

  126. Van Der Helden J, Boksem MAS, Blom JHG. The importance of failure: feedback-related negativity predicts motor learning efficiency. Cereb Cortex. 2010;20(7):1596–603.

    PubMed  Google Scholar 

  127. Winstein CJ, Schmidt RA. Reduced frequency of knowledge of results enhances motor skill learning. J Exp Psychol Learn Mem Cogn. 1990;16(4):677–91.

    Google Scholar 

  128. Wulf G. Self-controlled practice enhances motor learning: implications for physiotherapy. Physiotherapy. 2007;93(2):96–101.

    Google Scholar 

Download references

Acknowledgment

Kristen Edmonds, SPT for assistance in structure and video analysis; Anna Becker, SPT for skeletal drawings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey A. Meardon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meardon, S.A. (2020). Biomechanics and Stress Fractures: Utility of Running Gait Analysis. In: Miller, T.L., Kaeding, C.C. (eds) Stress Fractures in Athletes. Springer, Cham. https://doi.org/10.1007/978-3-030-46919-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46919-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46918-4

  • Online ISBN: 978-3-030-46919-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics