Skip to main content

Pathophysiology and Epidemiology of Stress Fractures

  • Chapter
  • First Online:
Stress Fractures in Athletes

Abstract

Stress injury of bone includes a spectrum from hyperactive bone remodeling to a discrete fracture line visible on imaging. Stress fractures can occur when bone, either healthy or osteopenic, is subject to repeated loading with subsequent failure of normal bone metabolism and remodeling. Factors that increase load, such as repetitive impact through competition or training during sports or military training, also contribute to the development of a stress fracture. They are also more common in the lower extremity, which sees loads that are multiples of bodyweight during many activities. Similarly, factors that affect normal bone turnover such as metabolic abnormalities, nutrient deficiencies and even genetic predisposition comprise additional important contributing factors. The incidence of stress fractures is difficult to establish from the current literature due to variation in the quality and method of exposure reporting between studies, and the heterogeneity of stress injury by location. Data on the occurrences and incidence rate of stress fracture do suggest, however, that females, runners, and military personnel have the highest incidence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMD:

Bone Mineral Density

BMI:

Body Mass Index

MRI:

Magnetic Resonance Imaging

PTH:

Parathyroid Hormone

SF:

Stress Fracture

WNBA:

Women’s National Basketball Association

References

  1. Kaplan FS, Hayes WC, Keaveny TM, et al. Form and function of bone. In: Simon SR, editor. Orthopaedic basic science. Rosemont: AAOS; 1994. p. 127–84.

    Google Scholar 

  2. Nalla RK, Kinney JH, Ritchie RO. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater. 2003;2(3):164–8.

    CAS  Google Scholar 

  3. Iundusi R, Scialdoni A, Arduini M, Battisti D, Piperno A, Gasbarra E, et al. Stress fractures in the elderly: different pathogenetic features compared with young patients. Aging Clin Exp Res. 2013;25(Suppl 1):S89–91.

    Google Scholar 

  4. Kemp AM, Dunstan F, Harrison S, Morris S, Mann M, Rolfe K, et al. Patterns of skeletal fractures in child abuse: systematic review. BMJ. 2008;337:a1518.

    PubMed  PubMed Central  Google Scholar 

  5. Sasimontonkul S, Bay BK, Pavol MJ. Bone contact forces on the distal tibia during the stance phase of running. J Biomech. 2007;40(15):3503–9.

    Google Scholar 

  6. Schnackenburg KE, Macdonald HM, Ferber R, Wiley JP, Boyd SK. Bone quality and muscle strength in female athletes with lower limb stress fractures. Med Sci Sports Exerc. 2011;43(11):2110–9.

    Google Scholar 

  7. Hadid A, Epstein Y, Shabshin N, Gefen A. Biomechanical model for stress fracture-related factors in athletes and soldiers. Med Sci Sports Exerc. 2018;50(9):1827–36.

    Google Scholar 

  8. Stanitski CL, McMaster JH, Scranton PE. On the nature of stress fractures. Am J Sports Med. 1978;6(6):391–6.

    CAS  Google Scholar 

  9. Kaeding CC, Miller T. The comprehensive description of stress fractures: a new classification system. J Bone Joint Surg Am. 2013;95(13):1214–20.

    Google Scholar 

  10. Sharma J, Heagerty R. Stress fracture: a review of the pathophysiology, epidemiology and management options. J Fract Sprains. 2017;1(1):1006.

    Google Scholar 

  11. Piekarski K, Munro M. Transport mechanism operating between blood supply and osteocytes in long bones. Nature. 1977;269(5623):80–2.

    CAS  Google Scholar 

  12. Otter MW, Qin YX, Rubin CT, McLeod KJ. Does bone perfusion/reperfusion initiate bone remodeling and the stress fracture syndrome? Med Hypotheses. 1999;53(5):363–8.

    CAS  Google Scholar 

  13. Simpson PJ, Lucchesi BR. Free radicals and myocardial ischemia and reperfusion injury. J Lab Clin Med. 1987;110(1):13–30.

    CAS  Google Scholar 

  14. Romani WA, Gieck JH, Perrin DH, Saliba EN, Kahler DM. Mechanisms and management of stress fractures in physically active persons. J Athl Train. 2002;37(3):306–14.

    PubMed  PubMed Central  Google Scholar 

  15. McCormick F, Nwachukwu BU, Provencher MT. Stress fractures in runners. Clin Sports Med. 2012;31(2):291–306.

    Google Scholar 

  16. Goldberg B, Pecora C. Stress fractures. Phys Sportsmed. 1994;22(3):68–78.

    CAS  Google Scholar 

  17. Wright AA, Taylor JB, Ford KR, Siska L, Smoliga JM. Risk factors associated with lower extremity stress fractures in runners: a systematic review with meta-analysis. Br J Sports Med. 2015;49(23):1517–23.

    Google Scholar 

  18. Chen YT, Tenforde AS, Fredericson M. Update on stress fractures in female athletes: epidemiology, treatment, and prevention. Curr Rev Musculoskelet Med. 2013;6(2):173–81.

    PubMed  PubMed Central  Google Scholar 

  19. Bennell KL, Malcolm SA, Thomas SA, Reid SJ, Brukner PD, Ebeling PR, et al. Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am J Sports Med. 1996;24(6):810–8.

    CAS  Google Scholar 

  20. Cosman F, Ruffing J, Zion M, Uhorchak J, Ralston S, Tendy S, et al. Determinants of stress fracture risk in United States Military Academy cadets. Bone. 2013;55(2):359–66.

    Google Scholar 

  21. Gaffney-Stomberg E, Nakayama AT, Guerriere KI, Lutz LJ, Walker LA, Staab JS, et al. Calcium and vitamin D supplementation and bone health in Marine recruits: effect of season. Bone. 2019;123:224–33.

    CAS  Google Scholar 

  22. Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin D supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res Off J Am Soc Bone Miner Res. 2008;23(5):741–9.

    CAS  Google Scholar 

  23. Myburgh KH, Hutchins J, Fataar AB, Hough SF, Noakes TD. Low bone density is an etiologic factor for stress fractures in athletes. Ann Intern Med. 1990;113(10):754–9.

    CAS  Google Scholar 

  24. Bennell K, Matheson G, Meeuwisse W, Brukner P. Risk factors for stress fractures. Sports Med. 1999;28(2):91–122.

    CAS  Google Scholar 

  25. Merkel D, Moran DS, Yanovich R, Evans RK, Finestone AS, Constantini N, et al. The association between hematological and inflammatory factors and stress fractures among female military recruits. Med Sci Sports Exerc. 2008;40(11 Suppl):S691–7.

    Google Scholar 

  26. Stager JM, Hatler LK. Menarche in athletes: the influence of genetics and prepubertal training. Med Sci Sports Exerc. 1988;20(4):369–73.

    CAS  Google Scholar 

  27. Frost HM. A new direction for osteoporosis research: a review and proposal. Bone. 1991;12(6):429–37.

    CAS  Google Scholar 

  28. Shaffer RA, Rauh MJ, Brodine SK, Trone DW, Macera CA. Predictors of stress fracture susceptibility in young female recruits. Am J Sports Med. 2006;34(1):108–15.

    Google Scholar 

  29. Rauh MJ, Macera CA, Trone DW, Shaffer RA, Brodine SK. Epidemiology of stress fracture and lower-extremity overuse injury in female recruits. Med Sci Sports Exerc. 2006;38(9):1571–7.

    Google Scholar 

  30. Winfield AC, Moore J, Bracker M, Johnson CW. Risk factors associated with stress reactions in female Marines. Mil Med. 1997;162(10):698–702.

    CAS  Google Scholar 

  31. Prather H, Hunt D, McKeon K, Simpson S, Meyer EB, Yemm T, et al. Are elite female soccer athletes at risk for disordered eating attitudes, menstrual dysfunction, and stress fractures? PM R. 2016;8(3):208–13.

    Google Scholar 

  32. Sormaala MJ, Niva MH, Kiuru MJ, Mattila VM, Pihlajamaki HK. Stress injuries of the calcaneus detected with magnetic resonance imaging in military recruits. J Bone Joint Surg Am. 2006;88(10):2237–42.

    Google Scholar 

  33. Knapik J, Montain SJ, McGraw S, Grier T, Ely M, Jones BH. Stress fracture risk factors in basic combat training. Int J Sports Med. 2012;33(11):940–6.

    CAS  Google Scholar 

  34. Dembowski SC, Tragord BS, Hand AF, Rohena-Quinquilla IR, Lee IE, Thoma DC, et al. Injury surveillance and reporting for trainees with bone stress injury: current practices and recommendations. Mil Med. 2018;183(11–12):e455–e61.

    Google Scholar 

  35. Hughes JM, McKinnon CJ, Taylor KM, Kardouni JR, Bulathsinhala L, Guerriere KI, et al. Nonsteroidal anti-inflammatory drug prescriptions are associated with increased stress fracture diagnosis in the US Army population. J Bone Miner Res Off J Am Soc Bone Miner Res. 2019;34(3):429–36.

    CAS  Google Scholar 

  36. Chalupa RL, Aberle C, Johnson AE. Observed rates of lower extremity stress fractures after implementation of the army physical readiness training program at JBSA Fort Sam Houston. US Army Med Dep J. 2016:6–9.

    Google Scholar 

  37. Mattila VM, Niva M, Kiuru M, Pihlajamaki H. Risk factors for bone stress injuries: a follow-up study of 102,515 person-years. Med Sci Sports Exerc. 2007;39(7):1061–6.

    Google Scholar 

  38. Pihlajamaki H, Parviainen M, Kyrolainen H, Kautiainen H, Kiviranta I. Regular physical exercise before entering military service may protect young adult men from fatigue fractures. BMC Musculoskelet Disord. 2019;20(1):126.

    PubMed  PubMed Central  Google Scholar 

  39. Dao D, Sodhi S, Tabasinejad R, Peterson D, Ayeni OR, Bhandari M, et al. Serum 25-hydroxyvitamin D levels and stress fractures in military personnel: a systematic review and meta-analysis. Am J Sports Med. 2015;43(8):2064–72.

    Google Scholar 

  40. Kunte R, Basannar D, Chatterjee K, Agarwal PK, Prasad L, Dubey P, et al. Gender differential and implications in the epidemiology of stress fractures among cadets of Indian Armed Forces. Med J Armed Forces India. 2017;73(4):356–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Richards T, Wright C. British Army recruits with low serum vitamin D take longer to recover from stress fractures. J R Army Med Corps. 2018:pii: jramc-2018-000983.

    Google Scholar 

  42. Davey T, Lanham-New SA, Shaw AM, Hale B, Cobley R, Berry JL, et al. Low serum 25-hydroxyvitamin D is associated with increased risk of stress fracture during Royal Marine recruit training. Osteoporos Int. 2016;27(1):171–9.

    CAS  Google Scholar 

  43. Gam A, Goldstein L, Karmon Y, Mintser I, Grotto I, Guri A, et al. Comparison of stress fractures of male and female recruits during basic training in the Israeli anti-aircraft forces. Mil Med. 2005;170(8):710–2.

    Google Scholar 

  44. Yanovich R, Merkel D, Israeli E, Evans RK, Erlich T, Moran DS. Anemia, iron deficiency, and stress fractures in female combatants during 16 months. J Strength Cond Res. 2011;25(12):3412–21.

    Google Scholar 

  45. Schwartz O, Malka I, Olsen CH, Dudkiewicz I, Bader T. Overuse injuries among female combat warriors in the Israeli Defense Forces: a cross-sectional study. Mil Med. 2018;183(11–12):e610–e6.

    Google Scholar 

  46. Milgrom C, Finestone AS. The effect of stress fracture interventions in a single elite infantry training unit (1983-2015). Bone. 2017;103:125–30.

    Google Scholar 

  47. Rice HM, Saunders SC, McGuire SJ, O’Leary TJ, Izard RM. Estimates of tibial shock magnitude in men and women at the start and end of a military drill training program. Mil Med. 2018;183(9–10):e392–8.

    Google Scholar 

  48. Brunet ME, Cook SD, Brinker MR, Dickinson JA. A survey of running injuries in 1505 competitive and recreational runners. J Sports Med Phys Fitness. 1990;30(3):307–15.

    CAS  Google Scholar 

  49. Tenforde AS, Sayres LC, McCurdy ML, Sainani KL, Fredericson M. Identifying sex-specific risk factors for stress fractures in adolescent runners. Med Sci Sports Exerc. 2013;45(10):1843–51.

    CAS  Google Scholar 

  50. Yagi S, Muneta T, Sekiya I. Incidence and risk factors for medial tibial stress syndrome and tibial stress fracture in high school runners. Knee Surg Sports Traumatol Arthrosc. 2013;21(3):556–63.

    Google Scholar 

  51. Abrams GD, Renstrom PA, Safran MR. Epidemiology of musculoskeletal injury in the tennis player. Br J Sports Med. 2012;46(7):492–8.

    Google Scholar 

  52. Balius R, Pedret C, Estruch A, Hernandez G, Ruiz-Cotorro A, Mota J. Stress fractures of the metacarpal bones in adolescent tennis players: a case series. Am J Sports Med. 2010;38(6):1215–20.

    Google Scholar 

  53. Maquirriain J, Ghisi JP. The incidence and distribution of stress fractures in elite tennis players. Br J Sports Med. 2006;40(5):454–9; discussion 9.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Field AE, Gordon CM, Pierce LM, Ramappa A, Kocher MS. Prospective study of physical activity and risk of developing a stress fracture among preadolescent and adolescent girls. Arch Pediatr Adolesc Med. 2011;165(8):723–8.

    PubMed  PubMed Central  Google Scholar 

  55. Patel NM, Mai DH, Ramme AJ, Karamitopoulos MS, Castaneda P, Chu A. Is the incidence of paediatric stress fractures on the rise? Trends in New York State from 2000 to 2015. J Pediatr Orthop B. 2019.

    Google Scholar 

  56. Furushima K, Itoh Y, Iwabu S, Yamamoto Y, Koga R, Shimizu M. Classification of olecranon stress fractures in baseball players. Am J Sports Med. 2014;42(6):1343–51.

    Google Scholar 

  57. Duckham RL, Brooke-Wavell K, Summers GD, Cameron N, Peirce N. Stress fracture injury in female endurance athletes in the United Kingdom: a 12-month prospective study. Scand J Med Sci Sports. 2015;25(6):854–9.

    CAS  Google Scholar 

  58. Abbott A, Bird ML, Wild E, Brown SM, Stewart G, Mulcahey MK. Part I: Epidemiology and risk factors for stress fractures in female athletes. Phys Sportsmed. 2019;48(6):1–8.

    Google Scholar 

  59. Rizzone KH, Ackerman KE, Roos KG, Dompier TP, Kerr ZY. The epidemiology of stress fractures in collegiate student-athletes, 2004-2005 through 2013-2014 academic years. J Athl Train. 2017;52(10):966–75.

    PubMed  PubMed Central  Google Scholar 

  60. Alway P, Brooke-Wavell K, Langley B, King M, Peirce N. Incidence and prevalence of lumbar stress fracture in English County Cricket fast bowlers, association with bowling workload and seasonal variation. BMJ Open Sport Exerc Med. 2019;5(1):e000529.

    PubMed  PubMed Central  Google Scholar 

  61. Frost WL, Chalmers DJ. Injury in elite New Zealand cricketers 2002-2008: descriptive epidemiology. Br J Sports Med. 2014;48(12):1002–7.

    Google Scholar 

  62. Tenforde AS, Brook EM, Broad E, Matzkin EG, Yang HY, Collins JE, et al. Prevalence and anatomical distribution of bone stress injuries in the elite para athlete. Am J Phys Med Rehabil. 2019;98(11):1036–40.

    Google Scholar 

  63. Miller TL, Jamieson M, Everson S, Siegel C. Expected time to return to athletic participation after stress fracture in division I collegiate athletes. Sports Health. 2018;10(4):340–4.

    Google Scholar 

  64. Pearce CJ, Brooks JH, Kemp SP, Calder JD. The epidemiology of foot injuries in professional rugby union players. Foot Ankle Surg. 2011;17(3):113–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Breathnach, O., Ng, K., Spindler, K.P., Wasserstein, D.N. (2020). Pathophysiology and Epidemiology of Stress Fractures. In: Miller, T.L., Kaeding, C.C. (eds) Stress Fractures in Athletes. Springer, Cham. https://doi.org/10.1007/978-3-030-46919-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46919-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46918-4

  • Online ISBN: 978-3-030-46919-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics