Skip to main content

Risk Factors for Developing Stress Fractures

  • Chapter
  • First Online:
Stress Fractures in Athletes

Abstract

Athletes vary in their susceptibility to stress fractures, and the cause of stress fractures is multifactorial. Risk factors are often categorized as intrinsic or extrinsic. Intrinsic risk factors can be further subcategorized into non-modifiable or modifiable. Non-modifiable risk factors include gender, race, previous history of fracture, genetics, and anatomic alignment. Modifiable risk factors include relative energy deficiency syndrome, calcium and/or vitamin D deficiency, low body weight, poor biomechanics, strength imbalance, and exposure to specific medications, tobacco, and/or alcohol. Extrinsic risk factors for stress fractures are largely modifiable and include sport or activity type, training variables, and improper equipment. Identifying these risk factors, especially those that are modifiable, can help guide care to prevent injuries in athletes who are at higher risk. Prediction algorithms utilizing risk factors have shown promise in helping to identify high-risk athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cosman F, Ruffing J, Zion M, Uhorchak J, Ralston S, Tendy S, et al. Determinants of stress fracture risk in United States Military Academy cadets. Bone. 2013;55(2):359–66.

    Article  PubMed  Google Scholar 

  2. Nattiv A, Kennedy G, Barrack MT, Abdelkerim A, Goolsby MA, Arends JC, et al. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes. Am J Sports Med. 2013;41(8):1930–41.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mayer SW, Joyner PW, Almekinders LC, Parekh SG. Stress fractures of the foot and ankle in athletes. Sports Health. 2014;6(6):481–91.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen YT, Tenforde AS, Fredericson M. Update on stress fractures in female athletes: epidemiology, treatment, and prevention. Curr Rev Musculoskelet Med. 2013;6(2):173–81.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pepper M, Akuthota V, McCarty EC. The pathophysiology of stress fractures. Clin Sports Med. 2006;25(1):1–16, vii.

    Article  PubMed  Google Scholar 

  6. Mandell JC, Khurana B, Smith SE. Stress fractures of the foot and ankle, part 1: biomechanics of bone and principles of imaging and treatment. Skelet Radiol. 2017;46(8):1021–9.

    Article  Google Scholar 

  7. Wentz L, Liu PY, Haymes E, Ilich JZ. Females have a greater incidence of stress fractures than males in both military and athletic populations: a systemic review. Mil Med. 2011;176(4):420–30.

    Article  PubMed  Google Scholar 

  8. Hakkinen K. Force production characteristics of leg extensor, trunk flexor and extensor muscles in male and female basketball players. J Sports Med Phys Fitness. 1991;31(3):325–31.

    CAS  PubMed  Google Scholar 

  9. Winter EM, Brookes FB. Electromechanical response times and muscle elasticity in men and women. Eur J Appl Physiol Occup Physiol. 1991;63(2):124–8.

    Article  CAS  PubMed  Google Scholar 

  10. Nattiv A, Armsey TD Jr. Stress injury to bone in the female athlete. Clin Sports Med. 1997;16(2):197–224.

    Article  CAS  PubMed  Google Scholar 

  11. Goldberg B, Pecora C. Stress fractures. Phys Sportsmed. 1994;22(3):68–78.

    Article  CAS  PubMed  Google Scholar 

  12. Johnson AW, Weiss CB Jr, Wheeler DL. Stress fractures of the femoral shaft in athletes – more common than expected. A new clinical test. Am J Sports Med. 1994;22(2):248–56.

    Article  CAS  PubMed  Google Scholar 

  13. Hame SL, LaFemina JM, McAllister DR, Schaadt GW, Dorey FJ. Fractures in the collegiate athlete. Am J Sports Med. 2004;32(2):446–51.

    Article  PubMed  Google Scholar 

  14. Yagi S, Muneta T, Sekiya I. Incidence and risk factors for medial tibial stress syndrome and tibial stress fracture in high school runners. Knee Surg Sports Traumatol Arthrosc. 2013;21(3):556–63.

    Article  PubMed  Google Scholar 

  15. Iwamoto J, Takeda T. Stress fractures in athletes: review of 196 cases. J Orthop Sci. 2003;8(3):273–8.

    Article  PubMed  Google Scholar 

  16. Tenforde AS, Sayres LC, McCurdy ML, Sainani KL, Fredericson M. Identifying sex-specific risk factors for stress fractures in adolescent runners. Med Sci Sports Exerc. 2013;45(10):1843–51.

    Article  CAS  PubMed  Google Scholar 

  17. Nattiv A, Puffer J, Casper J. Stress fracture risk factors, incidence and distribution: a 3 year prospective study in collegiate runners. Med Sci Sports Exerc. 2000;32(Suppl 5):S347.

    Google Scholar 

  18. Snyder RA, Koester MC, Dunn WR. Epidemiology of stress fractures. Clin Sports Med. 2006;25(1):37–52, viii.

    Article  PubMed  Google Scholar 

  19. Bennell KL, Malcolm SA, Thomas SA, Wark JD, Brukner PD. The incidence and distribution of stress fractures in competitive track and field athletes. A twelve-month prospective study. Am J Sports Med. 1996;24(2):211–7.

    Article  CAS  PubMed  Google Scholar 

  20. Wright AA, Taylor JB, Ford KR, Siska L, Smoliga JM. Risk factors associated with lower extremity stress fractures in runners: a systematic review with meta-analysis. Br J Sports Med. 2015;49(23):1517–23.

    Article  PubMed  Google Scholar 

  21. Gardner LI Jr, Dziados JE, Jones BH, Brundage JF, Harris JM, Sullivan R, et al. Prevention of lower extremity stress fractures: a controlled trial of a shock absorbent insole. Am J Public Health. 1988;78(12):1563–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brudvig TJ, Gudger TD, Obermeyer L. Stress fractures in 295 trainees: a one-year study of incidence as related to age, sex, and race. Mil Med. 1983;148(8):666–7.

    Article  CAS  PubMed  Google Scholar 

  23. Lappe JM, Stegman MR, Recker RR. The impact of lifestyle factors on stress fractures in female Army recruits. Osteoporos Int. 2001;12(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  24. Friedl KE, Nuovo JA, Patience TH, Dettori JR. Factors associated with stress fracture in young army women: indications for further research. Mil Med. 1992;157(7):334–8.

    Article  CAS  PubMed  Google Scholar 

  25. Bulathsinhala L, Hughes JM, McKinnon CJ, Kardouni JR, Guerriere KI, Popp KL, et al. Risk of stress fracture varies by race/ethnic origin in a cohort study of 1.3 million US Army soldiers. J Bone Miner Res. 2017;32(7):1546–53.

    Article  CAS  PubMed  Google Scholar 

  26. Barrow GW, Saha S. Menstrual irregularity and stress fractures in collegiate female distance runners. Am J Sports Med. 1988;16(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  27. Ohta-Fukushima M, Mutoh Y, Takasugi S, Iwata H, Ishii S. Characteristics of stress fractures in young athletes under 20 years. J Sports Med Phys Fitness. 2002;42(2):198–206.

    CAS  PubMed  Google Scholar 

  28. Ha KI, Hahn SH, Chung MY, Yang BK, Yi SR. A clinical study of stress fractures in sports activities. Orthopedics. 1991;14(10):1089–95.

    Article  CAS  PubMed  Google Scholar 

  29. Milgrom C, Finestone A, Shlamkovitch N, Rand N, Lev B, Simkin A, et al. Youth is a risk factor for stress fracture. A study of 783 infantry recruits. J Bone Joint Surg Br. 1994;76(1):20–2.

    Article  CAS  PubMed  Google Scholar 

  30. Winfield AC, Moore J, Bracker M, Johnson CW. Risk factors associated with stress reactions in female Marines. Mil Med. 1997;162(10):698–702.

    Article  CAS  PubMed  Google Scholar 

  31. Cline AD, Jansen GR, Melby CL. Stress fractures in female army recruits: implications of bone density, calcium intake, and exercise. J Am Coll Nutr. 1998;17(2):128–35.

    Article  CAS  PubMed  Google Scholar 

  32. Reinker KA, Ozburne S. A comparison of male and female orthopaedic pathology in basic training. Mil Med. 1979;144(8):532–6.

    Article  CAS  PubMed  Google Scholar 

  33. Kelsey JL, Bachrach LK, Procter-Gray E, Nieves J, Greendale GA, Sowers M, et al. Risk factors for stress fracture among young female cross-country runners. Med Sci Sports Exerc. 2007;39(9):1457–63.

    Article  PubMed  Google Scholar 

  34. Singer A, Ben-Yehuda O, Ben-Ezra Z, Zaltzman S. Multiple identical stress fractures in monozygotic twins. Case report. J Bone Joint Surg Am. 1990;72(3):444–5.

    Article  CAS  PubMed  Google Scholar 

  35. Lambros G, Alder D. Multiple stress fractures of the tibia in a healthy adult. Am J Orthop (Belle Mead NJ). 1997;26(10):687–8.

    CAS  Google Scholar 

  36. Nguyen TV, Eisman JA. Genetics of fracture: challenges and opportunities. J Bone Miner Res. 2000;15(7):1253–6.

    Article  CAS  PubMed  Google Scholar 

  37. Korvala J, Hartikka H, Pihlajamaki H, Solovieva S, Ruohola JP, Sahi T, et al. Genetic predisposition for femoral neck stress fractures in military conscripts. BMC Genet. 2010;11:95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Giladi M, Milgrom C, Stein M. The low arch, a protective factor in stress fractures: a prospective study of 295 military recruits. Orthop Rev. 1985;14:709–12.

    Google Scholar 

  39. Simkin A, Leichter I, Giladi M, Stein M, Milgrom C. Combined effect of foot arch structure and an orthotic device on stress fractures. Foot Ankle. 1989;10(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  40. McKenzie DC, Clement DB, Taunton JE. Running shoes, orthotics, and injuries. Sports Med. 1985;2(5):334–47.

    Article  CAS  PubMed  Google Scholar 

  41. Messier SP, Pittala KA. Etiologic factors associated with selected running injuries. Med Sci Sports Exerc. 1988;20(5):501–5.

    Article  CAS  PubMed  Google Scholar 

  42. Warren BL, Jones CJ. Predicting plantar fasciitis in runners. Med Sci Sports Exerc. 1987;19(1):71–3.

    Article  CAS  PubMed  Google Scholar 

  43. Brunet ME, Cook SD, Brinker MR, Dickinson JA. A survey of running injuries in 1505 competitive and recreational runners. J Sports Med Phys Fitness. 1990;30(3):307–15.

    CAS  PubMed  Google Scholar 

  44. Bennell KL, Malcolm SA, Thomas SA, Reid SJ, Brukner PD, Ebeling PR, et al. Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am J Sports Med. 1996;24(6):810–8.

    Article  CAS  PubMed  Google Scholar 

  45. Korpelainen R, Orava S, Karpakka J, Siira P, Hulkko A. Risk factors for recurrent stress fractures in athletes. Am J Sports Med. 2001;29(3):304–10.

    Article  CAS  PubMed  Google Scholar 

  46. Friberg O. Leg length asymmetry in stress fractures. A clinical and radiological study. J Sports Med Phys Fitness. 1982;22(4):485–8.

    CAS  PubMed  Google Scholar 

  47. Cowan DN, Jones BH, Frykman PN, Polly DW Jr, Harman EA, Rosenstein RM, et al. Lower limb morphology and risk of overuse injury among male infantry trainees. Med Sci Sports Exerc. 1996;28(8):945–52.

    Article  CAS  PubMed  Google Scholar 

  48. Finestone A, Shlamkovitch N, Eldad A, Wosk J, Laor A, Danon YL, et al. Risk factors for stress fractures among Israeli infantry recruits. Mil Med. 1991;156(10):528–30.

    Article  CAS  PubMed  Google Scholar 

  49. Bowerman EA, Whatman C, Harris N, Bradshaw E. A review of the risk factors for lower extremity overuse injuries in young elite female ballet dancers. J Dance Med Sci. 2015;19(2):51–6.

    Article  PubMed  Google Scholar 

  50. Hespanhol L, DeCarvalho A, Costa L, Lopes A. Lower limb alignment characteristics are not associated with running injuries in runners: prospective cohort study. Eur J Sport Sci. 2016;16(8):1137–44.

    Article  Google Scholar 

  51. Christopher S, McCullough J, Snodgrass S, Cook C. Do alterations in muscle strength, flexibility, range of motion, and alignment predict lower extremity injury in runners: a systematic review. Arch Physiother. 2019;9:2.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fields KB, Sykes JC, Walker KM, Jackson JC. Prevention of running injuries. Curr Sports Med Rep. 2010;9(3):176–82.

    Article  PubMed  Google Scholar 

  53. De Souza MJ, Nattiv A, Joy E, Misra M, Williams NI, Mallinson RJ, et al. 2014 female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad: 1st international conference held in San Francisco, California, May 2012 and 2nd international conference held in Indianapolis, Indiana, May 2013. Br J Sports Med. 2014;48(4):289.

    Article  PubMed  Google Scholar 

  54. Otis CL, Drinkwater B, Johnson M, Loucks A, Wilmore J. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 1997;29(5):i–ix.

    Article  CAS  PubMed  Google Scholar 

  55. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP, et al. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.

    Article  PubMed  Google Scholar 

  56. Ljungqvist A, Jenoure P, Engebretsen L, Alonso JM, Bahr R, Clough A, et al. The International Olympic Committee (IOC) consensus statement on periodic health evaluation of elite athletes March 2009. Br J Sports Med. 2009;43(9):631–43.

    Article  PubMed  Google Scholar 

  57. De Souza MJ, Lee DK, VanHeest JL, Scheid JL, West SL, Williams NI. Severity of energy-related menstrual disturbances increases in proportion to indices of energy conservation in exercising women. Fertil Steril. 2007;88(4):971–5.

    Article  PubMed  Google Scholar 

  58. O’Donnell E, Harvey PJ, De Souza MJ. Relationships between vascular resistance and energy deficiency, nutritional status and oxidative stress in oestrogen deficient physically active women. Clin Endocrinol. 2009;70(2):294–302.

    Article  CAS  Google Scholar 

  59. Rigotti NA, Nussbaum SR, Herzog DB, Neer RM. Osteoporosis in women with anorexia nervosa. N Engl J Med. 1984;311(25):1601–6.

    Article  CAS  PubMed  Google Scholar 

  60. Rigotti NA, Neer RM, Skates SJ, Herzog DB, Nussbaum SR. The clinical course of osteoporosis in anorexia nervosa. A longitudinal study of cortical bone mass. JAMA. 1991;265(9):1133–8.

    Article  CAS  PubMed  Google Scholar 

  61. Bachrach LK, Guido D, Katzman D, Litt IF, Marcus R. Decreased bone density in adolescent girls with anorexia nervosa. Pediatrics. 1990;86(3):440–7.

    Article  CAS  PubMed  Google Scholar 

  62. Frusztajer NT, Dhuper S, Warren MP, Brooks-Gunn J, Fox RP. Nutrition and the incidence of stress fractures in ballet dancers. Am J Clin Nutr. 1990;51(5):779–83.

    Article  CAS  PubMed  Google Scholar 

  63. Nattiv A, Puffer JC, Green GA. Lifestyles and health risks of collegiate athletes: a multi-center study. Clin J Sport Med. 1997;7(4):262–72.

    Article  CAS  PubMed  Google Scholar 

  64. Bennell KL, Malcolm SA, Thomas SA, Ebeling PR, McCrory PR, Wark JD, et al. Risk factors for stress fractures in female track-and-field athletes: a retrospective analysis. Clin J Sport Med. 1995;5(4):229–35.

    Article  CAS  PubMed  Google Scholar 

  65. Meczekalski B, Katulski K, Czyzyk A, Podfigurna-Stopa A, Maciejewska-Jeske M. Functional hypothalamic amenorrhea and its influence on women’s health. J Endocrinol Investig. 2014;37(11):1049–56.

    Article  CAS  Google Scholar 

  66. Nader S. Functional hypothalamic amenorrhea: case presentations and overview of literature. Hormones (Athens). 2019;18(1):49–54.

    Article  Google Scholar 

  67. Prokai D, Berga SL. Neuroprotection via reduction in stress: altered menstrual patterns as a marker for stress and implications for long-term neurologic health in women. Int J Mol Sci. 2016;17(12):2147.

    Article  CAS  PubMed Central  Google Scholar 

  68. Myburgh KH, Hutchins J, Fataar AB, Hough SF, Noakes TD. Low bone density is an etiologic factor for stress fractures in athletes. Ann Intern Med. 1990;113(10):754–9.

    Article  CAS  PubMed  Google Scholar 

  69. Warren MP, Brooks-Gunn J, Hamilton LH, Warren LF, Hamilton WG. Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N Engl J Med. 1986;314(21):1348–53.

    Article  CAS  PubMed  Google Scholar 

  70. Shaffer RA, Rauh MJ, Brodine SK, Trone DW, Macera CA. Predictors of stress fracture susceptibility in young female recruits. Am J Sports Med. 2006;34(1):108–15.

    Article  PubMed  Google Scholar 

  71. WHO Scientific Group on the Prevention and Management of Osteoporosis. Prevention and management of osteoporosis: report of a WHO scientific group. WHO technical report series. Geneva: WHO; 2003. p. 921.

    Google Scholar 

  72. Richmond B, Dalinka M, Daffner R, et al. Osteoporosis and bone mineral density: American College of Radiology ACR Appropriateness Criteria. Published 1999. Updated 2007. Accessed Sept 2019. Available: https://www.dcamedical.com/pdf/appropriateness-criteria-osteoporosis.pdf.

  73. Sedgwick P. T scores and z scores. BMJ. 2010;341:c7362.

    Article  Google Scholar 

  74. Lauder TD, Dixit S, Pezzin LE, Williams MV, Campbell CS, Davis GD. The relation between stress fractures and bone mineral density: evidence from active-duty Army women. Arch Phys Med Rehabil. 2000;81(1):73–9.

    Article  CAS  PubMed  Google Scholar 

  75. Kraus E, Tenforde AS, Nattiv A, Sainani KL, Kussman A, Deakins-Roche M, et al. Bone stress injuries in male distance runners: higher modified Female Athlete Triad Cumulative Risk Assessment scores predict increased rates of injury. Br J Sports Med. 2019;53(4):237–42.

    Article  PubMed  Google Scholar 

  76. Pouilles JM, Bernard J, Tremollieres F, Louvet JP, Ribot C. Femoral bone density in young male adults with stress fractures. Bone. 1989;10(2):105–8.

    Article  CAS  PubMed  Google Scholar 

  77. Marx RG, Saint-Phard D, Callahan LR, Chu J, Hannafin JA. Stress fracture sites related to underlying bone health in athletic females. Clin J Sport Med. 2001;11(2):73–6.

    Article  CAS  PubMed  Google Scholar 

  78. Tenforde AS, Parziale AL, Popp KL, Ackerman KE. Low bone mineral density in male athletes is associated with bone stress injuries at anatomic sites with greater trabecular composition. Am J Sports Med. 2018;46(1):30–6.

    Article  PubMed  Google Scholar 

  79. Cumming RG. Calcium intake and bone mass: a quantitative review of the evidence. Calcif Tissue Int. 1990;47(4):194–201.

    Article  CAS  PubMed  Google Scholar 

  80. Cranney A, Weiler HA, O’Donnell S, Puil L. Summary of evidence-based review on vitamin D efficacy and safety in relation to bone health. Am J Clin Nutr. 2008;88(2):513S–9S.

    Article  CAS  PubMed  Google Scholar 

  81. Gennari C. Calcium and vitamin D nutrition and bone disease of the elderly. Public Health Nutr. 2001;4(2B):547–59.

    Article  CAS  PubMed  Google Scholar 

  82. Nieves JW, Melsop K, Curtis M, Kelsey JL, Bachrach LK, Greendale G, et al. Nutritional factors that influence change in bone density and stress fracture risk among young female cross-country runners. PM R. 2010;2(8):740–50; quiz 94.

    Article  PubMed  Google Scholar 

  83. Rome K, Handoll HH, Ashford R. Interventions for preventing and treating stress fractures and stress reactions of bone of the lower limbs in young adults. Cochrane Database Syst Rev. 2005;(2):CD000450.

    Google Scholar 

  84. Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23(5):741–9.

    Article  CAS  PubMed  Google Scholar 

  85. Tenforde AS, Sayres LC, Sainani KL, Fredericson M. Evaluating the relationship of calcium and vitamin D in the prevention of stress fracture injuries in the young athlete: a review of the literature. PM R. 2010;2(10):945–9.

    Article  PubMed  Google Scholar 

  86. McCabe MP, Smyth MP, Richardson DR. Current concept review: vitamin D and stress fractures. Foot Ankle Int. 2012;33(6):526–33.

    Article  PubMed  Google Scholar 

  87. Ogan D, Pritchett K. Vitamin D and the athlete: risks, recommendations, and benefits. Nutrients. 2013;5(6):1856–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. National Osteoporosis Foundation. Calcium and Vitamin D. National Osteoporosis Foundation website. Updated Feb 2018. Accessed Sept 2019. Available: https://www.nof.org/patients/treatment/calciumvitamin-d/.

  89. Beck TJ, Ruff CB, Mourtada FA, Shaffer RA, Maxwell-Williams K, Kao GL, et al. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits. J Bone Miner Res. 1996;11(5):645–53.

    Article  CAS  PubMed  Google Scholar 

  90. Milgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, et al. An analysis of the biomechanical mechanism of tibial stress fractures among Israeli infantry recruits. A prospective study. Clin Orthop Relat Res. 1988;231:216–21.

    Article  Google Scholar 

  91. Milgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, et al. The area moment of inertia of the tibia: a risk factor for stress fractures. J Biomech. 1989;22(11–12):1243–8.

    Article  CAS  PubMed  Google Scholar 

  92. Milner CE, Ferber R, Pollard CD, Hamill J, Davis IS. Biomechanical factors associated with tibial stress fracture in female runners. Med Sci Sports Exerc. 2006;38(2):323–8.

    Article  PubMed  Google Scholar 

  93. Pohl MB, Mullineaux DR, Milner CE, Hamill J, Davis IS. Biomechanical predictors of retrospective tibial stress fractures in runners. J Biomech. 2008;41(6):1160–5.

    Article  PubMed  Google Scholar 

  94. Davis I, Milner C, Hamill J. Does increased loading during running lead to tibial stress fractures? A prospective study. Med Sci Sports Exerc. 2004;36:S58.

    Google Scholar 

  95. Milner CE, Davis IS, Hamill J. Free moment as a predictor of tibial stress fracture in distance runners. J Biomech. 2006;39(15):2819–25.

    Article  PubMed  Google Scholar 

  96. Mercer JA, Bates BT, Dufek JS, Hreljac A. Characteristics of shock attenuation during fatigued running. J Sports Sci. 2003;21(11):911–9.

    Article  CAS  PubMed  Google Scholar 

  97. Mizrahi J, Verbitsky O, Isakov E. Fatigue-induced changes in decline running. Clin Biomech (Bristol, Avon). 2001;16(3):207–12.

    Article  CAS  Google Scholar 

  98. Mizrahi J, Verbitsky O, Isakov E. Fatigue-related loading imbalance on the shank in running: a possible factor in stress fractures. Ann Biomed Eng. 2000;28(4):463–9.

    Article  CAS  PubMed  Google Scholar 

  99. Clansey AC, Hanlon M, Wallace ES, Lake MJ. Effects of fatigue on running mechanics associated with tibial stress fracture risk. Med Sci Sports Exerc. 2012;44(10):1917–23.

    Article  PubMed  Google Scholar 

  100. Fyhrie DP, Milgrom C, Hoshaw SJ, Simkin A, Dar S, Drumb D, et al. Effect of fatiguing exercise on longitudinal bone strain as related to stress fracture in humans. Ann Biomed Eng. 1998;26(4):660–5.

    Article  CAS  PubMed  Google Scholar 

  101. Milgrom C, Radeva-Petrova DR, Finestone A, Nyska M, Mendelson S, Benjuya N, et al. The effect of muscle fatigue on in vivo tibial strains. J Biomech. 2007;40(4):845–50.

    Article  PubMed  Google Scholar 

  102. Dierks TA, Davis IS, Hamill J. The effects of running in an exerted state on lower extremity kinematics and joint timing. J Biomech. 2010;43(15):2993–8.

    Article  PubMed  Google Scholar 

  103. Yoshikawa T, Mori S, Santiesteban AJ, Sun TC, Hafstad E, Chen J, et al. The effects of muscle fatigue on bone strain. J Exp Biol. 1994;188:217–33.

    Article  CAS  PubMed  Google Scholar 

  104. Hoffman JR, Chapnik L, Shamis A, Givon U, Davidson B. The effect of leg strength on the incidence of lower extremity overuse injuries during military training. Mil Med. 1999;164(2):153–6.

    Article  CAS  PubMed  Google Scholar 

  105. Warden SJ, Davis IS, Fredericson M. Management and prevention of bone stress injuries in long-distance runners. J Orthop Sports Phys Ther. 2014;44(10):749–65.

    Article  PubMed  Google Scholar 

  106. Giladi M, Milgrom C, Stein M, Kashtan H, Margulies J, Chisin R, et al. External rotation of the hip. A predictor of risk for stress fractures. Clin Orthop Relat Res. 1987;216:131–4.

    Article  Google Scholar 

  107. Beck TJ, Ruff CB, Shaffer RA, Betsinger K, Trone DW, Brodine SK. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone. 2000;27(3):437–44.

    Article  CAS  PubMed  Google Scholar 

  108. Cobb KL, Bachrach LK, Sowers M, Nieves J, Greendale GA, Kent KK, et al. The effect of oral contraceptives on bone mass and stress fractures in female runners. Med Sci Sports Exerc. 2007;39(9):1464–73.

    Article  CAS  PubMed  Google Scholar 

  109. Hergenroeder AC. Bone mineralization, hypothalamic amenorrhea, and sex steroid therapy in female adolescents and young adults. J Pediatr. 1995;126(5 Pt 1):683–9.

    Article  CAS  PubMed  Google Scholar 

  110. Cumming DC, Wall SR, Galbraith MA, Belcastro AN. Reproductive hormone responses to resistance exercise. Med Sci Sports Exerc. 1987;19(3):234–8.

    Article  CAS  PubMed  Google Scholar 

  111. Seeman E, Szmukler GI, Formica C, Tsalamandris C, Mestrovic R. Osteoporosis in anorexia nervosa: the influence of peak bone density, bone loss, oral contraceptive use, and exercise. J Bone Miner Res. 1992;7(12):1467–74.

    Article  CAS  PubMed  Google Scholar 

  112. Klibanski A, Biller BM, Schoenfeld DA, Herzog DB, Saxe VC. The effects of estrogen administration on trabecular bone loss in young women with anorexia nervosa. J Clin Endocrinol Metab. 1995;80(3):898–904.

    CAS  PubMed  Google Scholar 

  113. Hartard M, Kleinmond C, Kirchbichler A, Jeschke D, Wiseman M, Weissenbacher ER, et al. Age at first oral contraceptive use as a major determinant of vertebral bone mass in female endurance athletes. Bone. 2004;35(4):836–41.

    Article  CAS  PubMed  Google Scholar 

  114. Berenson AB, Radecki CM, Grady JJ, Rickert VI, Thomas A. A prospective, controlled study of the effects of hormonal contraception on bone mineral density. Obstet Gynecol. 2001;98(4):576–82.

    CAS  PubMed  Google Scholar 

  115. Pack AM. The association between antiepileptic drugs and bone disease. Epilepsy Curr. 2003;3(3):91–5.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rizzoli R, Cooper C, Reginster JY, Abrahamsen B, Adachi JD, Brandi ML, et al. Antidepressant medications and osteoporosis. Bone. 2012;51(3):606–13.

    Article  CAS  PubMed  Google Scholar 

  117. Spencer H, Kramer L. Osteoporosis: calcium, fluoride, and aluminum interactions. J Am Coll Nutr. 1985;4(1):121–8.

    Article  CAS  PubMed  Google Scholar 

  118. Targownik LE, Lix LM, Metge CJ, Prior HJ, Leung S, Leslie WD. Use of proton pump inhibitors and risk of osteoporosis-related fractures. CMAJ. 2008;179(4):319–26.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Briot K, Roux C. Glucocorticoid-induced osteoporosis. RMD Open. 2015;1(1):e000014.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rizzone KH, Ackerman KE, Roos KG, Dompier TP, Kerr ZY. The epidemiology of stress fractures in collegiate student-athletes, 2004-2005 through 2013-2014 academic years. J Athl Train. 2017;52(10):966–75.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Khan M, Madden K, Burrus MT, Rogowski JP, Stotts J, Samani MJ, et al. Epidemiology and impact on performance of lower extremity stress injuries in professional basketball players. Sports Health. 2018;10(2):169–74.

    Article  PubMed  Google Scholar 

  122. Macera CA, Pate RR, Powell KE, Jackson KL, Kendrick JS, Craven TE. Predicting lower-extremity injuries among habitual runners. Arch Intern Med. 1989;149(11):2565–8.

    Article  CAS  PubMed  Google Scholar 

  123. Marti B, Vader JP, Minder CE, Abelin T. On the epidemiology of running injuries. The 1984 Bern Grand-Prix study. Am J Sports Med. 1988;16(3):285–94.

    Article  CAS  PubMed  Google Scholar 

  124. Walter SD, Hart LE, McIntosh JM, Sutton JR. The Ontario cohort study of running-related injuries. Arch Intern Med. 1989;149(11):2561–4.

    Article  CAS  PubMed  Google Scholar 

  125. Tenforde AS, Kraus E, Fredericson M. Bone stress injuries in runners. Phys Med Rehabil Clin N Am. 2016;27(1):139–49.

    Article  PubMed  Google Scholar 

  126. Sullivan D, Warren RF, Pavlov H, Kelman G. Stress fractures in 51 runners. Clin Orthop Relat Res. 1984;187:188–92.

    Article  Google Scholar 

  127. Kadel NJ, Teitz CC, Kronmal RA. Stress fractures in ballet dancers. Am J Sports Med. 1992;20(4):445–9.

    Article  CAS  PubMed  Google Scholar 

  128. Scully TJ, Besterman G. Stress fracture – a preventable training injury. Mil Med. 1982;147(4):285–7.

    Article  CAS  PubMed  Google Scholar 

  129. Rudzki SJ. Injuries in Australian Army recruits. Part I: decreased incidence and severity of injury seen with reduced running distance. Mil Med. 1997;162(7):472–6.

    Article  CAS  PubMed  Google Scholar 

  130. Popovich RM, Gardner JW, Potter R, Knapik JJ, Jones BH. Effect of rest from running on overuse injuries in army basic training. Am J Prev Med. 2000;18(3 Suppl):147–55.

    Article  CAS  PubMed  Google Scholar 

  131. Shaffer R, Brodine S, Almeida S, Williams K, Ronaghy S. Use of simple measures of physical activity to predict stress fractures in young men undergoing a rigorous physical training program. Am J Epidemiol. 1999;149(3):236–42.

    Article  CAS  PubMed  Google Scholar 

  132. Milgrom C, Finestone A, Segev S, Olin C, Arndt T, Ekenman I. Are overground or treadmill runners more likely to sustain tibial stress fracture? Br J Sports Med. 2003;37(2):160–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mandell JC, Khurana B, Smith SE. Stress fractures of the foot and ankle, part 2: site-specific etiology, imaging, and treatment, and differential diagnosis. Skelet Radiol. 2017;46(9):1165–86.

    Article  Google Scholar 

  134. Pearce CJ, Zaw H, Calder JD. Stress fracture of the anterior process of the calcaneus associated with a calcaneonavicular coalition: a case report. Foot Ankle Int. 2011;32(1):85–8.

    Article  PubMed  Google Scholar 

  135. Snyder RA, DeAngelis JP, Koester MC, Spindler KP, Dunn WR. Does shoe insole modification prevent stress fractures? A systematic review. HSS J. 2009;5(2):92–8.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Finestone A, Giladi M, Elad H, Salmon A, Mendelson S, Eldad A, et al. Prevention of stress fractures using custom biomechanical shoe orthoses. Clin Orthop Relat Res. 1999;360:182–90.

    Article  Google Scholar 

  137. Gillespie WJ, Grant I. Interventions for preventing and treating stress fractures and stress reactions of bone of the lower limbs in young adults. Cochrane Database Syst Rev. 2000;(2):CD000450.

    Google Scholar 

  138. Lieberman DE, Venkadesan M, Werbel WA, Daoud AI, D’Andrea S, Davis IS, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature. 2010;463(7280):531–5.

    Article  CAS  PubMed  Google Scholar 

  139. Lord MJ, Ha KI, Song KS. Stress fractures of the ribs in golfers. Am J Sports Med. 1996;24(1):118–22.

    Article  CAS  PubMed  Google Scholar 

  140. Hickey GJ, Fricker PA, McDonald WA. Injuries to elite rowers over a 10-yr period. Med Sci Sports Exerc. 1997;29(12):1567–72.

    Article  CAS  PubMed  Google Scholar 

  141. Tenforde AS, Sainani KL, Carter Sayres L, Milgrom C, Fredericson M. Participation in ball sports may represent a prehabilitation strategy to prevent future stress fractures and promote bone health in young athletes. PM R. 2015;7(2):222–5.

    Article  PubMed  Google Scholar 

  142. Tenforde AS, Fredericson M. Influence of sports participation on bone health in the young athlete: a review of the literature. PM R. 2011;3(9):861–7.

    Article  PubMed  Google Scholar 

  143. Tenforde AS, Carlson JL, Sainani KL, Chang AO, Kim JH, Golden NH, et al. Sport and triad risk factors influence bone mineral density in collegiate athletes. Med Sci Sports Exerc. 2018;50(12):2536–43.

    Article  PubMed  Google Scholar 

  144. Milgrom C, Simkin A, Eldad A, Nyska M, Finestone A. Using bone’s adaptation ability to lower the incidence of stress fractures. Am J Sports Med. 2000;28(2):245–51.

    Article  CAS  PubMed  Google Scholar 

  145. Fredericson M, Ngo J, Cobb K. Effects of ball sports on future risk of stress fracture in runners. Clin J Sport Med. 2005;15(3):136–41.

    Article  PubMed  Google Scholar 

  146. Tenforde AS, Carlson JL, Chang A, Sainani KL, Shultz R, Kim JH, et al. Association of the Female Athlete Triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med. 2017;45(2):302–10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay Ramey Argo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasitinon, D., Ramey Argo, L. (2020). Risk Factors for Developing Stress Fractures. In: Miller, T.L., Kaeding, C.C. (eds) Stress Fractures in Athletes. Springer, Cham. https://doi.org/10.1007/978-3-030-46919-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46919-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46918-4

  • Online ISBN: 978-3-030-46919-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics