Skip to main content

Energetic Ground State Calculations, Electronic Band Structure at Surfaces

  • Chapter
Springer Handbook of Surface Science

Part of the book series: Springer Handbooks ((SHB))

  • 2715 Accesses

Abstract

Ground-state properties and electronic band structures at surfaces are a very important field of research in surface science not only for catalysis, but more recently for organic electronics where several sensitive experimental techniques have been developed. Nowadays, a joint theoretical and experimental effort based on exceptionally improved computer power/algorithms and experimental advances is successful in describing adsorption sites, geometry, reconstruction, and many-body properties. In the first section, we focus on density functional theory (DFT) including its historical improvements: generalized gradient approximation, self-interaction correction, hybrid functionals (orbital-dependent functional), and phenomenological treatments of van der Waals (vdW) interaction. After examining the methods to compute band structures, we present organic classes of molecules. Polycyclic aromatic hydrocarbons have attracted significant interest for organic electronic devices, and are presented through examples of pentacene on silicon, noble metals, and aluminum. Charge rearrangement/dipoles/spin distributions induced by adsorption complete this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • K. Burke: Perspective on density functional theory, J. Chem. Phys. 136, 150901 (2012)

    ADS  Google Scholar 

  • P. Hohenberg, W. Kohn: Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964)

    ADS  MathSciNet  Google Scholar 

  • W. Kohn, L.J. Sham: Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965)

    ADS  MathSciNet  Google Scholar 

  • R.M. Dreizler, E.K.U. Gross: Density Functional Theory, 3rd edn. (Springer, Berlin, Heidelberg 1990)

    MATH  Google Scholar 

  • J.P. Perdew, M. Levy: Comment on “Significance of the highest occupied Kohn–Sham eigenvalue”, Phys. Rev. B 56, 16021 (1997)

    ADS  Google Scholar 

  • M.T. Yin, M.L. Cohen: Ground-state properties of diamond, Phys. Rev. B 24, 6121 (1981)

    ADS  Google Scholar 

  • M.T. Yin, M.L. Cohen: Microscopic theory of the phase transformation and lattice dynamics of Si, Phys. Rev. Lett. 45, 1044 (1980)

    ADS  Google Scholar 

  • G.P. Brivio, M.I. Trioni: The adiabatic molecule-metal surface interaction: Theoretical approaches, Rev. Mod. Phys. 71, 231 (1999)

    ADS  Google Scholar 

  • J.P. Perdew, K. Burke, Y. Wang: Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54, 16533 (1996)

    ADS  Google Scholar 

  • S. Kümmel, L. Kronik: Orbital-dependent density functionals: Theory and applications, Rev. Mod. Phys. 80, 3 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  • Y. Wang, J.P. Perdew: Spin scaling of the electron-gas correlation energy in the high-density limit, Phys. Rev. B 43, 8911 (1991)

    ADS  Google Scholar 

  • W. Yang, J.P. Perdew: Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling, Phys. Rev. B 43, 13298 (1991)

    Google Scholar 

  • J.P. Perdew, Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45, 13244 (1992)

    ADS  Google Scholar 

  • J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46, 6671 (1992)

    ADS  Google Scholar 

  • J.P. Perdew, H.Q. Tran, K. Burke, E.D. Smith: Stabilized jellium: Structureless pseudopotential model for the cohesive and surface properties of metals, Phys. Rev. B 42, 11627 (1990)

    ADS  Google Scholar 

  • J.P. Perdew, K. Burke, M. Ernzerhof: Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  • Y. Zhang, W. Yang: Comment on “Generalized gradient approximation made simple”, Phys. Rev. Lett. 80, 890 (1998)

    ADS  Google Scholar 

  • B. Hammer, L.B. Hansen, J.K. Nørskov: Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals, Phys. Rev. B 59, 7413 (1999)

    ADS  Google Scholar 

  • J.P. Perdew, A. Zunger: Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23, 3048 (1981)

    Google Scholar 

  • M. Cococcioni, S. De Gironcoli: Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Phys. Rev. B 71, 035105 (2005)

    ADS  Google Scholar 

  • P. García-González, R.W. Godby: Many-body GW calculations of ground-state properties: Quasi-2D electron systems and van der Waals forces, Phys. Rev. Lett. 88, 056406 (2002)

    ADS  Google Scholar 

  • J.P. Perdew, M. Levy, J.L. Balduz Jr.: Density-functional theory for fractional particle number: Derivative discontinuities of the energy, Phys. Rev. Lett. 49, 1691 (1982)

    ADS  Google Scholar 

  • R. Parr, R.A. Donnell, M. Levy, W.E. Palke: Electronegativity: The density functional viewpoint, J. Chem. Phys. 68, 3801 (1978)

    ADS  Google Scholar 

  • S. Kümmel, J.P. Perdew: Optimized effective potential made simple: Orbital functionals, orbital shifts, and the exact Kohn–Sham exchange potential, Phys. Rev. B 68, 035103 (2003)

    ADS  Google Scholar 

  • T.L. Gilbert: Hohenberg–Kohn theorem for nonlocal external potentials, Phys. Rev. B 12, 2111 (1975)

    ADS  Google Scholar 

  • A.D. Becke: A new mixing of Hartree–Fock and local density-functional theories, J. Chem. Phys. 98, 1372 (1993)

    ADS  Google Scholar 

  • A.D. Becke: Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 5648 (1993)

    ADS  Google Scholar 

  • A.D. Becke: Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38, 3098 (1988)

    ADS  Google Scholar 

  • C. Lee, W. Yang, R.G. Parr: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37, 785 (1988)

    ADS  Google Scholar 

  • P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Fritsch: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem. Lett. 98, 11623 (1994)

    Google Scholar 

  • R.H. Hertwig, W. Koch: On the parameterization of the local correlation functional. What is Becke-3-LYP?, Chem. Phys. Lett. 268, 345 (1997)

    ADS  Google Scholar 

  • V.N. Staroverov, G.E. Scuseria, J. Tao, J.P. Perdew: Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes, J. Chem. Phys. 19, 12129 (2003)

    ADS  Google Scholar 

  • R. Peverati, D.G. Truhlar: Quest for a universal density functional: The accuracy of density functionals across a broad spectrum of databases in chemistry and physics, Philos. Trans. R. Soc. A 372, 20120476 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  • A. Stroppa, G. Kresse: The shortcomings of semi-local and hybrid functionals: What we can learn from surface science studies, New J. Phys. 10, 063020 (2008)

    ADS  Google Scholar 

  • A.M. Reilly, A. Tkachenko: Van der Waals dispersion interactions in molecular materials: Beyond pairwise additivity, Chem. Sci. 6, 3289 (2015)

    Google Scholar 

  • J. Klimes, A. Michaelides: Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory, J. Chem. Phys. 137, 128901 (2012)

    Google Scholar 

  • C. Berland, V.R. Cooper, K. Lee, E. Schröder, T. Thonhauser, P. Hyldgaard, B.I. Lundqvist: Van der Waals forces in density functional theory: A review of the vdW-DF method, Rep. Prog. Phys. 78, 066501 (2015)

    ADS  Google Scholar 

  • Y. Andersson, D.C. Langreth, B.I. Lundqvist: Van der Waals interactions in density-functional theory, Phys. Rev. Lett. 76, 102 (1996)

    ADS  Google Scholar 

  • D.C. Langreth, M. Dion, H. Ryberg, E. Schröder, P. Hyldgaard, B.I. Lundqvist: Van der Waals density functional theory with applications, Int. J. Quantum Chem. 101, 599 (2005)

    Google Scholar 

  • M. Dion, H. Ryberg, E. Schröder, D.C. Langreth, B.I. Lundqvist: Van der Waals density functional for general geometries, Phys. Rev. Lett. 92, 246401 (2005)

    ADS  Google Scholar 

  • K. Lee, E.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth: Higher-accuracy van der Waals density functional, Phys. Rev. B 82, 081101(R) (2010)

    ADS  Google Scholar 

  • S.D. Chakarova-Käck, E. Schröder, B.I. Lundqvist, D.C. Langreth: Application of van der Waals density functional to an extended system: Adsorption of benzene and naphthalene on graphite, Phys. Rev. Lett. 96, 146107 (2006)

    ADS  Google Scholar 

  • S. Grimme: Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27, 1787 (2006)

    Google Scholar 

  • S. Grimme, J. Antony, S. Ehrlich, H. Krie: A consistent and accurate ab initio dispersion correction DFT-D for the 94 elements H-Pu, J. Chem. Phys. 132, 154104 (2010)

    ADS  Google Scholar 

  • B. Shanigaram, R.K. Chitumalla, K. Bhanuprakash: Adsorption of TCNQ and F4-TCNQ molecules on hydrogen-terminated Si(111) surface: Van der Waals interactions included DFT study of the molecular orientations, Comput. Theor. Chem. 1084, 174 (2016)

    Google Scholar 

  • A. Tkatchenko, M. Scheffler: Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data, Phys. Rev. Lett. 102, 073005 (2009)

    ADS  Google Scholar 

  • V.G. Ruiz, W. Liu, E. Zojer, M. Scheffler, A. Tkatchenko: Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems, Phys. Rev. Lett. 108, 146103 (2012)

    ADS  Google Scholar 

  • E. Zaremba, W. Kohn: Van der Waals interaction between an atom and a solid surface, Phys. Rev. B 13, 2270 (1976)

    ADS  Google Scholar 

  • W. Liu, V.G. Ruiz, G. Zhang, B. Santra, X. Ren, M. Scheffler, A. Tkatchenko: Structure and energetics of benzene adsorbed on transition-metal surfaces: Density-functional theory with van der Waals interactions including collective substrate response, New J. Phys. 15, 053046 (2013)

    ADS  Google Scholar 

  • W. Liu, A. Tkatchenko, M. Scheffler: Modeling adsorption and reactions of organic molecules at metal surfaces, Acc. Chem. Res. 108, 47 (2014)

    Google Scholar 

  • L. Schimka, J. Harl, A. Stroppa, A. Gruneis, M. Marsman, F. Mitterdorfer, G. Kresse: Accurate surface and adsorption enegies from many-body pertubation theory, Nat. Mater. 9, 741 (2010)

    ADS  Google Scholar 

  • F. De Angelis, A. Tilocca, A. Selloni: Time-dependent DFT study of [Fe(CN)6]4- sensitization of TiO2 nanoparticles, J. Am. Chem. Soc. 126, 15024 (2004)

    Google Scholar 

  • T. Stecher, K. Reuter, H. Oberhofer: First-principles free-energy barriers for photoelectrochemical surface reactions: Proton abstraction at TiO2(110), Phys. Rev. Lett. 117, 276001 (2016)

    ADS  Google Scholar 

  • A.A. Herzing, C.J. Kiely, A.F. Carley, P. Landon, G.J. Hutchings, H.-J. Freund: Identification of active gold nanoclusters on iron oxide supports for CO oxidation, Science 321, 1331 (2008)

    ADS  Google Scholar 

  • H.-J. Freund: Models for heterogeneous catalysts: Studies at the atomic level, Rend. Fis. Acc. Lincei 28, 5 (2017)

    Google Scholar 

  • M. Schlüter, J.R. Chelikowsky, S.G. Louie, M.L. Cohen: Self-consistent pseudopotential calculations for Si (111) surfaces: Unreconstructed (1$$\times$$1) and reconstructed (2$$\times$$1) model structures, Phys. Rev. B 12, 4200 (1975)

    ADS  Google Scholar 

  • M. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos: Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64, 1045 (1992)

    ADS  Google Scholar 

  • R.M. Martin: Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ. Press, Cambridge 2004)

    MATH  Google Scholar 

  • T.B. Grimley, C. Pisani: Chemisorption theory in the Hartree–Fock approximation, J. Phys. C 7, 2831 (1974)

    ADS  Google Scholar 

  • A.R. Williams, P.J. Feibelman, N.D. Lang: Green's-function methods for electronic-structure calculations, Phys. Rev. B 26, 5433 (1982)

    ADS  Google Scholar 

  • J. Bormet, J. Neugebauer, M. Scheffler: Chemical trends and bonding mechanisms for isolated adsorbates on Al(111), Phys. Rev. B 49, 17242 (1994)

    ADS  Google Scholar 

  • C. Pisani, F. Corá, R. Nada, R. Orlando: Hartree–Fock perturbed-cluster treatment of local defects in crystals I. The EMBED program: General features, Comput. Phys. Commun. 82, 139 (1994)

    ADS  Google Scholar 

  • S. Krüger, N. Rosch: The moderately-large-embedded-cluster method for metal surfaces; a density-functional study of atomic adsorption, J. Phys. Condens. Matter 6, 8149 (1994)

    ADS  Google Scholar 

  • N. Govind, Y.A. Wang, E.A. Carter: Electronic-structure calculations by first-principles density-based embedding of explicitly correlated systems, J. Chem. Phys. 110, 7677 (1999)

    ADS  Google Scholar 

  • J.E. Inglesfield: A method of embedding, J. Phys. C 14, 3795 (1981)

    ADS  Google Scholar 

  • M.I. Trioni, G.P. Brivio, S. Crampin, J.E. Inglesfield: Embedding approach to the isolated adsorbate, Phys. Rev. B 53, 8052 (1996)

    ADS  Google Scholar 

  • H. Ishida: Surface-embedded Green-function method: A formulation using a linearized-augmented-plane-wave basis set, Phys. Rev. B 63, 165409 (2001)

    ADS  Google Scholar 

  • J.E. Inglesfield: The Embedding Method for Electronic Structure, 1st edn. (IOP, Bristol 2016)

    MATH  Google Scholar 

  • G.P. Brivio, G. Butti, S. Caravati, G. Fratesi, M.I. Trioni: Theoretical approaches in adsorption: Alkali adatom investigations, J. Phys. Condens. Matter 19, 305005 (2007)

    Google Scholar 

  • M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro: Density-functional method for nonequilibrium electron transport, Phys. Rev. B 65, 165401 (2002)

    ADS  Google Scholar 

  • G. Fratesi, C. Motta, M.I. Trioni, G.P. Brivio, D. Sánchez-Portal: Resonant lifetime of core-excited organic adsorbates from first principles, J. Phys. Chem. C 118, 8775 (2014)

    Google Scholar 

  • D. Cvetko, G. Fratesi, G. Kladnik, A. Cossaro, G.P. Brivio, L. Venkataraman, A. Morgante: Ultrafast electron injection into photo-excited organic molecules, Phys. Chem. Chem. Phys. 18, 8264 (2016)

    Google Scholar 

  • P. Persson, M.J. Lundqvist, R. Ernstorfer, W.A. Goddard III, F. Willig: Quantum chemical calculations of the influence of anchor-cum-spacer groups on femtosecond electron transfer times in dye-sensitized semiconductor nanocrystals, J. Chem. Theory Comput. 2, 441 (2006)

    Google Scholar 

  • W. Shockley: On the surface states associated with a periodic potential, Phys. Rev. 56, 317 (1939)

    ADS  MATH  Google Scholar 

  • I. Tamm: On the possible bound states of electrons on a crystal surface, Phys. Z. Sowjetunion 1, 733 (1932)

    Google Scholar 

  • M.C. Desjonqueres, D. Spanjaard: Concepts in Surface Physics, 2nd edn. (Springer, Berlin, Heidelberg 2013)

    Google Scholar 

  • H. Lüth: Solid Surfaces, Interfaces and Thin Films, 5th edn. (Springer, Berlin, Heidelberg 2010)

    MATH  Google Scholar 

  • T.B. Grimley: The molecular orbital theory of the interaction between an atom and a crystal surface, Proc. Phys. Soc. 72, 103 (1958)

    ADS  Google Scholar 

  • P.O. Gartland, B.J. Slagsvold: Transitions conserving parallel momentum in photoemission from the (111) face of copper, Phys. Rev. B 12, 4047 (1975)

    ADS  Google Scholar 

  • S.D. Kevan: Evidence for a new broadening mechanism in angle-resolved photoemission from Cu(111), Phys. Rev. Lett. 50, 526 (1983)

    ADS  Google Scholar 

  • S. Caravati, G. Butti, G.P. Brivio, M.I. Trioni, S. Pagliara, G. Ferrini, G. Galimberti, E. Pedersoli, C. Giannetti, F. Parmigiani: Cu(111) and Cu(001) surface electronic states. Comparison between theory and experiment, Surf. Sci. 600, 3901 (2006)

    ADS  Google Scholar 

  • A. Zangwill: Physics at Surfaces (Cambridge Univ. Press, Cambridge 1988)

    Google Scholar 

  • M. Milun, P. Pervan, D.P. Woodruff: Quantum well structures in thin metal films: Simple model physics in reality?, Rep. Prog. Phys. 65, 99 (2002)

    ADS  Google Scholar 

  • P.M. Echenique, R. Berndt, E.V. Chulkov, T. Fauster, A. Goldmann, U. Höfer: Decay of electronic excitations at metal surfaces, Surf. Sci. Rep. 52, 213 (2004)

    ADS  Google Scholar 

  • N.D. Lang, W. Kohn: Theory of metal surfaces: Induced surface charge and image potential, Phys. Rev. B 7, 3541 (1972)

    ADS  Google Scholar 

  • E.V. Chulkov, V.M. Silkin, P.M. Echenique: Image potential states on metal surfaces: Binding energies and wave functions, Surf. Sci. 437, 330 (1999)

    ADS  Google Scholar 

  • A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, R.A. Duine: New perspectives for Rashba spin–orbit coupling, Nat. Mater. 14, 871 (2015)

    ADS  Google Scholar 

  • T. Nakazawa, N. Takagi, M. Kawai, H. Ishida, R. Arafune: Rashba splitting in an image potential state investigated by circular dichroism two-photon photoemission spectroscopy, Phys. Rev. B 94, 115412 (2016)

    ADS  Google Scholar 

  • G. Onida, L. Reining, A. Rubio: Electronic excitations: Density-functional versus many-body Green’s-function approaches, Rev. Mod. Phys. 74, 601 (2002)

    ADS  Google Scholar 

  • J. Kliewer, R. Berndt, E.V. Chulkov, V.M. Silkin, P.M. Echenique, S. Crampin: Decay of electronic excitations at metal surfaces, Science 288, 1399 (2000)

    ADS  Google Scholar 

  • S.Å. Lindgren, L. Walldén: Cu surface state and Cs valence electrons in photoelectron spectra from the Cu(111)/Cs adsorption system, Solid State Commun. 28, 283 (1978)

    ADS  Google Scholar 

  • F.J. Himpsel, J.A. Knapp, D.A. Eastman: Angle resolved photoemission study of the electronic structure of chemisorbed hydrogen on Ni(111), Phys. Rev. B 19, 2872 (1979)

    ADS  Google Scholar 

  • S.Å. Lindgren, J. Paul, L. Walldén: Surface state energy shifts by molecular adsorption: Co on clean and Na covered Cu(111), Surf. Sci. 117, 426 (1982)

    ADS  Google Scholar 

  • S.-Y. Hong, P.-O. Yeh, I. Lee, J. Yu, J.I. Dadap, C. Nuckolls, R.M. Osgood: Coverage-dependent modification of the surface electronic structure of an organic-semiconductor-adsorbate layer, J. Phys. Chem. C 118, 6214 (2014)

    Google Scholar 

  • A. Bendounan, S. Ait-Ouazzou: Role of the Shockley state in doping of organic molecule monolayer, J. Phys. Chem. C 120, 11456 (2016)

    Google Scholar 

  • P.A. Sloan, S. Sakulsermsuk, R.E. Palmer: Nonlocal desorption of chlorobenzene molecules from the Si(111)(7 × 7) surface by charge injection from the tip of a scanning tunneling microscope: Remote control of atomic manipulation, Phys. Rev. Lett. 105, 048301 (2010)

    ADS  Google Scholar 

  • A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, R.A. Duine: New perspectives for Rashba spin-orbit coupling, Nat. Mater. 14, 871 (2015)

    ADS  Google Scholar 

  • T.B. Grimley: The molecular orbital theory of interaction between an atom and a crystal surface, Proc. Phys. Soc. A 72, 103 (1958)

    ADS  Google Scholar 

  • T.B. Grimley: The indirect interaction between atoms or molecules adsorbed on metals, Proc. Phys. Soc. A 90, 751 (1967)

    ADS  Google Scholar 

  • D.M. Newns: Self-consistent model of hydrogen chemisorption, Phys. Rev. 178, 1123 (1969)

    ADS  Google Scholar 

  • B. Hammer, J.K. Nørskov: Theoretical surface science and catalysis -- Calculations and concepts, Adv. Catal. 45, 71 (2000)

    Google Scholar 

  • I. Langmuir: Vapor pressures, evaporation, condensation and adsorption, J. Am. Chem. Soc. 54, 2798 (1932)

    Google Scholar 

  • R.W. Gurney: Theory of electrical double layers in adsorbed films, Phys. Rev. 47, 479 (1935)

    ADS  Google Scholar 

  • J. Bormet, J. Neugebauer, M. Scheffler: Chemical trends and bonding mechanisms for isloated adsorbates on Al(111), Phys. Rev. B 49, 17242 (1994)

    ADS  Google Scholar 

  • R.D. Diehl, R. McGrath: Current progress in understanding alkali metal adsorption on metal surfaces, J. Phys. Condens. Matter 9, 951 (1997)

    ADS  Google Scholar 

  • M.I. Trioni, S. Achilli, E.V. Chulkov: Key ingredients of the alkali atom–metal surface interaction: Chemical bonding versus spectral properties, Prog. Surf. Sci. 88, 160 (2013)

    ADS  Google Scholar 

  • A. Cucchetti, S.C. Ying: Diffusion of Na atoms on a Cu(001) surface, Phys. Rev. B 60, 11110 (1999)

    ADS  Google Scholar 

  • G. Alexandrowicz, A. Jardine, H. Hedgeland, W. Allison, J. Ellis: Onset of 3D collective surface diffusion in the presence of lateral interactions: Na/Cu(001), Phys. Rev. Lett. 97, 145103 (2006)

    Google Scholar 

  • G. Fratesi, G. Alexandrowicz, M. Trioni, G.P. Brivio, W. Allison: Crucial electronic contributions to measures of surface diffusion by He atom scattering, Phys. Rev. B 77, 235444 (2008)

    ADS  Google Scholar 

  • O. Godsi, G. Corem, T. Kravchuk, C. Bertram, K. Morgenstern, H. Hedgeland, A.P. Jardine, W. Allison, J. Ellis, G. Alexandrowicz: How atomic steps modify diffusion and inter-adsorbate forces: Empirical evidence from hopping dynamics in Na/Cu(115), J. Phys. Chem. Lett. 6, 4165 (2015)

    Google Scholar 

  • M. Cavallini, G. Gallinari, L. Menegretti, G. Scoles, U. Valbusa: Rainbow scattering and the intermolecular potential of argon, Chem. Phys. Lett. 7, 302 (1970)

    ADS  Google Scholar 

  • G. Boato, P. Cantini, U. Garibaldi, A.C. Levi, R. Spedacini, G.E. Tommei: Diffraction and rainbow in atom surface scattering, J. Phys. C 6, L394 (1973)

    Google Scholar 

  • G. Brusdeylins, R.B. Doak, J.P. Toennies: Measurement of the dispersion relation for Rayleigh surface phonons of Li(100) by inelastic scattering of surface atoms, Phys. Rev. Lett. 46, 437 (1981)

    ADS  Google Scholar 

  • G. Fratesi, G. Alexandrowicz, M.I. Trioni, G.P. Brivio, W. Allison: Crucial electronic contributions to measures of surface diffusion by He atom scattering measurement, Phys. Rev. B 77, 235444 (2008)

    ADS  Google Scholar 

  • J.L.F. Da Silva, C. Stampfl: Trends in adsorption of noble gases He, Ne, Ar, Kr, and Xe on Pd(111)($$\sqrt3 \times \sqrt3$$) R30°: All-electron density functional calculations, Phys. Rev. B 77, 045401 (2008)

    ADS  Google Scholar 

  • K.H. Rieder, G. Parschau, B. Burg: Experimental evidence for anticorrugating effects in He-metal interactions at surfaces, Phys. Rev. Lett. 71, 1059 (1993)

    ADS  Google Scholar 

  • M. Petersen, S. Wilke, P. Ruggerone, B. Kohler, M. Scheffler: Scattering of rare-gas atoms at a metal surface: Evidence of anticorrugation of the helium-atom potential energy surface and the surface electron density, Phys. Rev. Lett. 76, 995 (1994)

    ADS  Google Scholar 

  • N. Jean, M.I. Trioni, G.P. Brivio, V. Bortolani: Corrugating and anticorrugating static interactions in helium-atom scattering from metals, Phys. Rev. Lett. 92, 013201 (2004)

    ADS  Google Scholar 

  • A. Picone, M. Riva, G. Fratesi, A. Brambilla, G. Bussetti, M. Finazzi, L. Duò, F. Ciccacci: Enhanced atom mobility on the surface of a metastable film, Phys. Rev. Lett. 113, 046102 (2014)

    ADS  Google Scholar 

  • J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides: Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev. 105, 1103 (2005)

    Google Scholar 

  • W. Auwärter, D. Écija, F. Klappenberger, J.V. Barth: Porphyrins at interfaces, Nat. Chem. 7, 105 (2015)

    Google Scholar 

  • J.M. Gottfried: Surface chemistry of porphyrins and phthalocyanines, Surf. Sci. Rep. 70, 259 (2015)

    ADS  Google Scholar 

  • G. Witte, C. Wöll: Growth of aromatic molecules on solid substrates for applications in organic electronics, J. Mater. Res. 19, 1889 (2004)

    ADS  Google Scholar 

  • G.R. Dholakia, M. Meyyappan, A. Facchetti, T.J. Marks: Monolayer to multilayer nanostructural growth transition in n-type oligothiophenes on Au(111) and implications for organic field-effect transistor performance, Nano Lett. 6, 2447 (2006)

    ADS  Google Scholar 

  • C.-H. Chao, C.-H. Chan, F.-C. Wu, J.-J. Huang, S.Y. Lien, K.-W. Weng, H.-L. Cheng: Efficient hybrid organic/inorganic photovoltaic cells utilizing n-type pentacene and intrinsic/p-type hydrogenated amorphous silicon, Sol. Energy Mater. Sol. Cells 95, 2407 (2011)

    Google Scholar 

  • V.C. Sundar: Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals, Science 303, 1644 (2004)

    ADS  Google Scholar 

  • Y.-Y. Lin, D.I. Gundlach, S.F. Nelson, T.N. Jackson: Pentacene-based organic thin-film transistors, IEEE Trans. Electron Devices 44, 1325 (1997)

    ADS  Google Scholar 

  • Y.-Y. Lin, D.I. Gundlach, S.F. Nelson, T.N. Jackson: Stacked pentacene layer organic thin-film transistors with improved characteristics, IEEE Electron Device Lett. 18, 606 (1997)

    ADS  Google Scholar 

  • U. Diebold: The surface science of titanium dioxide, Surf. Sci. Rep. 48, 53 (2003)

    ADS  Google Scholar 

  • C.L. Pang, R. Lindsay, G. Thornton: Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces, Chem. Rev. 113, 3887 (2013)

    Google Scholar 

  • G. Fratesi, V. Lanzilotto, S. Stranges, M. Alagia, G.P. Brivio, L. Floreano: High resolution NEXAFS of perylene and PTCDI: A surface science approach to molecular orbital analysis, Phys. Chem. Chem. Phys. 16, 14834 (2014)

    Google Scholar 

  • V. Lanzilotto, C. Sanchez-Sanchez, G. Bavdek, D. Cvetko, M.F. Lopez, J.A. Martin-Gago, L. Floreano: Planar growth of pentacene on the dielectric TiO2(110) surface, J. Phys. Chem. C 115, 4664 (2011)

    Google Scholar 

  • M. Alagia, C. Baldacchini, M.G. Betti, F. Bussolotti, V. Carravetta, U. Ekström, C. Mariani, S. Stranges: Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: Experiment and theory, J. Chem. Phys. 122, 124305 (2005)

    ADS  Google Scholar 

  • G. Fratesi, V. Lanzilotto, L. Floreano, G.P. Brivio: Azimuthal dichroism in near-edge x-ray absorption fine structure spectra of planar molecules, J. Phys. Chem. C 117, 6632 (2013)

    Google Scholar 

  • G. Bavdek, A. Cossaro, D. Cvetko, C. Africh, C. Blasetti, F. Esch, A. Morgante, L. Floreano: Pentacene nanorails on Au(110), Langmuir 24, 767 (2008)

    Google Scholar 

  • A. Baby, G. Fratesi, S.R. Vaidya, L.L. Patera, C. Africh, L. Floreano, G.P. Brivio: Anchoring and bending of pentacene on aluminum (001), J. Phys. Chem. C 119, 3624 (2015)

    Google Scholar 

  • T. Suzuki, D.C. Sorescu, J.T. Yates: The chemisorption of pentacene on Si(001)-2×1, Surf. Sci. 600, 5092 (2006)

    ADS  Google Scholar 

  • H.-K. Lee, J.-H. Han, K.-J. Kim, T.-H. Kang, B. Kim: Configuration of pentacene (C22H14) films on Si(100)-2$$\times$$1 studied by NEXAFS, Surf. Sci. 601, 1456 (2007)

    ADS  Google Scholar 

  • T. Shimada, H. Nogawa, T. Hasegawa, R. Okada, H. Ichikawa, K. Ueno, K. Saiki: Bulk-like pentacene epitaxial films on hydrogen-terminated Si(111), Appl. Phys. Lett. 87, 061917 (2005)

    ADS  Google Scholar 

  • K.P. Weidkamp, R.M. Tromp, R.J. Hamers: Epitaxial growth of large pentacene crystals on Si(001) surfaces functionalized with molecular monolayers, J. Phys. Chem. C 111, 16489 (2007)

    Google Scholar 

  • P.G. Schroeder, C.B. France, J.B. Park, B.A. Parkinson: Energy level alignment and two-dimensional structure of pentacene on Au(111) surfaces, J. Appl. Phys. 91, 3010 (2002)

    ADS  Google Scholar 

  • M. Pedio, B. Doyle, N. Mahne, A. Giglia, F. Borgatti, S. Nannarone, S.K.M. Henze, R. Temirov, F.S. Tautz, L. Casalis, R. Hudej, M.F. Danisman, B. Nickel: Growth of pentacene on Ag(111) surface: A NEXAFS study, Appl. Surf. Sci. 254, 103 (2007)

    ADS  Google Scholar 

  • D. Lüftner, T. Ules, E.M. Reinisch, G. Koller, S. Soubatch, F.S. Tautz, M.G. Ramsey, P. Puschnig: Imaging the wave functions of adsorbed molecules, Proc. Natl. Acad. Sci. U.S.A. 111, 605 (2014)

    ADS  Google Scholar 

  • K. Toyoda, I. Hamada, K. Lee, S. Yanagisawa, Y. Morikawa: Density functional theoretical study of pentacene/noble metal interfaces with van der Waals corrections: Vacuum level shifts and electronic structures, J. Chem. Phys. 132, 134703 (2010)

    ADS  Google Scholar 

  • A. Ferretti, C. Baldacchini, A. Calzolari, R. Di Felice, A. Ruini, E. Molinari, M. Betti: Mixing of electronic states in pentacene adsorption on copper, Phys. Rev. Lett. 99, 046802 (2007)

    ADS  Google Scholar 

  • K. Müller, A.P. Seitsonen, T. Brugger, J. Westover, T. Greber, T. Jung, A. Kara: Electronic structure of an organic/metal interface: Pentacene/Cu(110), J. Phys. Chem. C 116, 23465 (2012)

    Google Scholar 

  • M. Simeoni, S. Picozzi, B. Delley: An ab-initio study of pentacene on aluminum (100) surface, Surf. Sci. 562, 43 (2004)

    ADS  Google Scholar 

  • E. Molteni, G. Cappellini, G. Onida, G. Fratesi: Optical properties of organically functionalized silicon surfaces: Uracil-like nucleobases on Si(001), Phys. Rev. B 95, 075437 (2017)

    ADS  Google Scholar 

  • A. Baby, H. Lin, G.P. Brivio, L. Floreano, G. Fratesi: Core-level spectra and molecular deformation in adsorption: V-shaped pentacene on Al(001), Beilstein J. Nanotechnol. 6, 2242 (2015)

    Google Scholar 

  • P. Bagus, D. Käfer, G. Witte, C. Wöll: Work function changes induced by charged adsorbates: Origin of the polarity asymmetry, Phys. Rev. Lett. 100, 126101 (2008)

    ADS  Google Scholar 

  • G. Fratesi: Potential energy surface of alkali atoms adsorbed on Cu(001), Phys. Rev. B 80, 045422 (2009)

    ADS  Google Scholar 

  • C.A. Papageorgopoulos: Studies of separate adsorption and coadsorption of Cs and O2 on Cu(100), Phys. Rev. B 25, 3740 (1982)

    ADS  Google Scholar 

  • G. Fratesi, A. Pace, G.P. Brivio: Short-range lateral interactions and depolarization of Na atoms on Cu surfaces, J. Phys. Condens. Matter 22, 304005 (2010)

    Google Scholar 

  • D.A. MacLaren, C. Huang, A.C. Levi, W. Allison: Coverage-dependent quantum versus classical scattering of thermal neon atoms from Li/Cu(100), J. Chem. Phys. 129, 094706 (2008)

    ADS  Google Scholar 

  • G. Fratesi: Depolarization and bonding in quasi-one-dimensional Na structures on Cu(001), Phys. Rev. B 84, 155424 (2011)

    ADS  Google Scholar 

  • A.P. Graham, J.P. Toennies: Helium-atom diffraction study of the submonolayer structures of sodium on Cu(001), Phys. Rev. B 56, 15378 (1997)

    ADS  Google Scholar 

  • C. Huang, G. Fratesi, D.A. MacLaren, W. Luo, G.P. Brivio, W. Allison: Charge redistribution in the formation of one-dimensional lithium wires on Cu(001), Phys. Rev. B 82, 081413 (2010)

    ADS  Google Scholar 

  • P.K.J. Wong, W. Zhang, G. van der Laan, M.P. de Jong: Hybridization-induced charge rebalancing at the weakly interactive C60/Fe3O4(001) spinterface, Org. Electron. 29, 39 (2016)

    Google Scholar 

  • Y.-H. Chu, C.-H. Hsu, C.-I. Lu, H.-H. Yang, T.-H. Yang, C.-H. Luo, K.-J. Yang, S.-H. Hsu, G. Hoffmann, C.-C. Kaun, M.-T. Lin: Spin-dependent molecule symmetry at a pentacene--Co spinterface, ACS Nano 9, 7027 (2015)

    Google Scholar 

  • H. Wende, M. Bernien, J. Luo, C. Sorg, N. Ponpandian, J. Kurde, J. Miguel, M. Piantek, X. Xu, P. Eckhold, W. Kuch, K. Baberschke, P.M. Panchmatia, B. Sanyal, P.M. Oppeneer, O. Eriksson: Substrate-induced magnetic ordering and switching of iron porphyrin molecules, Nat. Mater. 6, 516 (2007)

    ADS  Google Scholar 

  • S. Casolo, O.M. Løvvik, R. Martinazzo, G.F. Tantardini: Understanding adsorption of hydrogen atoms on graphene, J. Chem. Phys. 130, 054704 (2009)

    ADS  Google Scholar 

  • E.J.G. Santos, A. Ayuela, D. Sánchez-Portal: Universal magnetic properties of sp3-type defects in covalently functionalized graphene, New J. Phys. 14, 043022 (2012)

    ADS  Google Scholar 

  • H. Lin, G. Fratesi, G.P. Brivio: Graphene magnetism induced by covalent adsorption of aromatic radicals, Phys. Chem. Chem. Phys. 17, 2210 (2014)

    Google Scholar 

  • E.J.G. Santos, D. Sánchez-Portal, A. Ayuela: Magnetism of covalently functionalized carbon nanotubes, Appl. Phys. Lett. 99, 062503 (2011)

    ADS  Google Scholar 

  • R. Martinazzo: Atomic-scale defects and impurities in graphene. In: Graphene Science Handbook. Nanostructure and Atomic Arrangement, ed. by M. Aliofkhazraei, N. Ali, W.I. Milne, C.S. Ozkan, S. Mitura, J.L. Gervasoni (CRC, Boca Raton 2016)

    Google Scholar 

  • J.C. Meyer, C.O. Girit, M.F. Crommie, A. Zettl: Imaging and dynamics of light atoms and molecules on graphene, Nature 454, 319 (2008)

    ADS  Google Scholar 

  • R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekær: Bandgap opening in graphene induced by patterned hydrogen adsorption, Nat. Mater. 9, 315 (2010)

    ADS  Google Scholar 

  • J. Balakrishnan, G. Kok Wai Koon, M. Jaiswal, A.H. Castro Neto, B. Özyilmaz: Colossal enhancement of spin-orbit coupling in weakly hydrogenated graphene, Nat. Phys. 9, 284 (2013)

    Google Scholar 

  • A.A. Komlev, T.L. Makarova, E. Lahderanta, P.V. Semenikhin, A.I. Veinger, T.V. Tisnek, G. Magnani, G. Bertoni, D. Pontiroli, M. Ricco: Magnetism of aniline modified graphene-based materials, J. Magn. Magn. Mater. 415, 45 (2016)

    ADS  Google Scholar 

  • J.B. Taylor, L.C. Mayor, J.C. Swarbrick, J.N. O'Shea, C. Isvoranu, J. Schnadt: Adsorption and charge transfer dynamics of bi-isonicotinic acid on Au(111), J. Chem. Phys. 127, 134707 (2007)

    ADS  Google Scholar 

  • A. Ravikumar, A. Baby, H. Lin, G.P. Brivio, G. Fratesi: Femtomagnetism in graphene induced by core level excitation of organic adsorbates, Sci. Rep. 6, 24603 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Fratesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Brivio, G.P., Fratesi, G. (2020). Energetic Ground State Calculations, Electronic Band Structure at Surfaces. In: Rocca, M., Rahman, T.S., Vattuone, L. (eds) Springer Handbook of Surface Science. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-46906-1_16

Download citation

Publish with us

Policies and ethics