Skip to main content

Mechanisms and Dynamics of the Bacterial Flagellar Motor

  • Chapter
  • First Online:
Physical Microbiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1267))

Abstract

Many bacteria are able to actively propel themselves through their complex environment, in search of resources and suitable niches. The source of this propulsion is the Bacterial Flagellar Motor (BFM), a molecular complex embedded in the bacterial membrane which rotates a flagellum. In this chapter we review the known physical mechanisms at work in the motor. The BFM shows a highly dynamic behavior in its power output, its structure, and in the stoichiometry of its components. Changes in speed, rotation direction, constituent protein conformations, and the number of constituent subunits are dynamically controlled in accordance to external chemical and mechanical cues. The mechano-sensitivity of the motor is likely related to the surface-sensing ability of bacteria, relevant in the initial stage of biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel S, Chien P, Wassmann P, Schirmer T, Kaever V, Laub MT, Baker TA, Jenal U (2011) Regulatory cohesion of cell cycle and cell differentiation through interlinked phosphorylation and second messenger networks. Mol Cell 43(4):550–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adler J (1966) Chemotaxis in bacteria. Science 153(3737):708–716

    CAS  PubMed  Google Scholar 

  • Armitage JP, Schmitt R (1997) Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti–variations on a theme? Microbiology 143:3671–3682

    CAS  PubMed  Google Scholar 

  • Asakura S (1970) Polymerization of flagellin and polymorphism of flagella. Adv Biophys 1:99–155

    CAS  PubMed  Google Scholar 

  • Attmannspacher U, Scharf BE, Harshey RM (2008) FliL is essential for swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella enterica. Mol Microbiol 68(2):328–341

    CAS  PubMed  Google Scholar 

  • Bai F, Branch RW, Nicolau DV, Pilizota T, Steel BC, Maini PK, Berry RM (2010) Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 327(5966):685–689

    CAS  PubMed  Google Scholar 

  • Bai F, Minamino T, Wu Z, Namba K, Xing J (2012) Coupling between switching regulation and torque generation in bacterial flagellar motor. Phys Rev Lett 108(17):178105

    PubMed  PubMed Central  Google Scholar 

  • Baker AE, O’Toole GA (2017) Bacteria, rev your engines: stator dynamics regulate flagellar motility. J Bacteriol 199(12):e00088–e00017

    PubMed  PubMed Central  Google Scholar 

  • Beeby M, Ribardo DA, Brennan CA, Ruby EG, Jensen GJ, Hendrixson DR (2016) Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc Natl Acad Sci USA 113(13):E1917–E1926

    CAS  PubMed  Google Scholar 

  • Belas R (2014) Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol 22(9):517–527

    CAS  PubMed  Google Scholar 

  • Belas R, Suvanasuthi R (2005) The ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein. J Bacteriol 187(19):6789–6803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berg CH (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72(1):19–54

    CAS  PubMed  Google Scholar 

  • Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239(5374):500–504

    CAS  PubMed  Google Scholar 

  • Berg HC, Turner L (1993) Torque generated by the flagellar motor of Escherichia coli. Biophys J 65(5):2201–2216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berne C, Ellison CK, Ducret A, Brun YV (2018) Bacterial adhesion at the single-cell level. Nat Rev Microbiol 16:616–27

    CAS  PubMed  Google Scholar 

  • Berry RM, Berg HC (1997) Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. Proc Natl Acad Sci USA 94(26):14433–14437

    CAS  PubMed  Google Scholar 

  • Berry RM, Turner L, Berg HC (1995) Mechanical limits of bacterial flagellar motors probed by electrorotation. Biophys J 69(1):280–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blair DF, Berg HC (1988) Restoration of torque in defective flagellar motors. Science 242(4886):1678–1681

    CAS  PubMed  Google Scholar 

  • Blair KM, Turner L, Winkelman JT, Berg HC, Kearns DB (2008) A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320(5883):1636–1638

    CAS  PubMed  Google Scholar 

  • Block SM, Berg HC (1984) Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309(5967):470–472

    CAS  PubMed  Google Scholar 

  • Block SM, Blair DF, Berg HC (1989) Compliance of bacterial flagella measured with optical tweezers. Nature 338(6215):514–518

    CAS  PubMed  Google Scholar 

  • Block SM, Blair DF, Berg HC (1991) Compliance of bacterial polyhooks measured with optical tweezers. Cytometry 12(6):492–496

    CAS  PubMed  Google Scholar 

  • Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, Kaever V, Sourjik V, Roth V, Jenal U (2010) Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141(1):107–116

    CAS  PubMed  Google Scholar 

  • Branch RW, Sayegh MN, Shen C, Nathan VSJ, Berg HC (2014) Adaptive remodelling by FliN in the bacterial rotary motor. J Mol Biol 426(19):3314–3324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braun TF, Blair DF (2001) Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two h+channels in the stator complex. Biochemistry 40(43):13051–13059

    CAS  PubMed  Google Scholar 

  • Brown MT, Steel BC, Silvestrin C, Wilkinson DA, Delalez NJ, Lumb CN, Obara B, Armitage JP, Berry RM (2012) Flagellar hook flexibility is essential for bundle formation in swimming Escherichia coli cells. J Bacteriol 194(13):3495–3501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caiazza NC, Merritt JH, Brothers KM, O’Toole GA (2007) Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189(9):3603–3612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calladine CR, Luisi BF, Pratap JV (2013) A “mechanistic” explanation of the multiple helical forms adopted by bacterial flagellar filaments. J Mol Biol 425(5):914–928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo DJ, Nakamura S, Morimoto YV, Che Y-S, Kami-ike N, Kudo S, Minamino T, Namba K (2013) C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor. Biophysics 9:173–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaban B, Velocity Hughes H, Beeby M (2015) The flagellum in bacterial pathogens: for motility and a whole lot more. In: Seminars in cell & developmental biology, vol 46. Elsevier, Amsterdam, pp 91–103

    Google Scholar 

  • Chawla R, Ford KM, Lele PP (2017) Torque, but not FliL, regulates mechanosensitive flagellar motor-function. Sci Rep 7(1):5565

    PubMed  PubMed Central  Google Scholar 

  • Che YS, Nakamura S, Kojima S, Kami-Ike N, Namba K, Minamino T (2008) Suppressor analysis of the MotB(D33E) mutation to probe the bacterial flagellar motor dynamics coupled with proton translocation. J Bacteriol 190:6660–6667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Che Y-S, Nakamura S, Morimoto YV, Kami-ike N, Namba K, Minamino T (2014) Load-sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor. Mol Microbiol 91(1):175–184

    CAS  PubMed  Google Scholar 

  • Chen X, Berg HC (2000) Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys J 78(2):1036–1041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Beeby M, Murphy GE, Leadbetter JR, Hendrixson DR, Briegel A, Li Z, Shi J, Tocheva EI, Müller A, Dobro MJ, Jensen GJ (2011) Structural diversity of bacterial flagellar motors. EMBO J 30(14):2972–2981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chun SY, Parkinson JS (1988) Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 239(4837):276–278

    CAS  PubMed  Google Scholar 

  • Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287(5458):1652–1655

    CAS  PubMed  Google Scholar 

  • Cusick K, Lee Y-Y, Youchak B, Belas R (2012) Perturbation of FliL interferes with Proteus mirabilis swarmer cell gene expression and differentiation. J Bacteriol 194(2):437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darnton NC, Berg HC (2007) Force-extension measurements on bacterial flagella: triggering polymorphic transformations. Biophys J 92(6):2230–2236

    CAS  PubMed  Google Scholar 

  • Delalez NJ, Wadhams GH, Rosser G, Xue Q, Brown MT, Dobbie IM, Berry RM, Leake MC, Armitage JP (2010) Signal-dependent turnover of the bacterial flagellar switch protein FliM. Proc Natl Acad Sci USA 107(25):11347–11351

    CAS  PubMed  Google Scholar 

  • Delalez NJ, Berry RM, Armitage JP (2014) Stoichiometry and turnover of the bacterial flagellar switch protein FliN. mBio 5(4):e01216–e01214

    Google Scholar 

  • De Mot R, Vanderleyden J (1994) The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both gram-positive and gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Mol Microbiol 12(2):333–334

    PubMed  Google Scholar 

  • Deme, Justin and Johnson, Steven and Vickery, Owen and Muellbauer, Amy and Monkhouse, Holly and Griffiths, Thomas and Hennell-James, Rory and Berks, Ben and Coulton, James and Stansfeld, Phillip James and others (2020) Structures of the stator complex that drives rotation of the bacterial flagellum. BioRxiv, Cold Spring Harbor Laboratory

    Google Scholar 

  • Dorel C (2010) Manipulating bacterial cell fate: key role of surface-sensing and signal transduction. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Badajoz, pp 791–800

    Google Scholar 

  • Duke TA, Le Novere N, Bray D (2001) Conformational spread in a ring of proteins: a stochastic approach to allostery. J Mol Biol 308(3):541–553

    CAS  PubMed  Google Scholar 

  • Dyer CM, Vartanian AS, Zhou H, Dahlquist FW (2009) A molecular mechanism of bacterial flagellar motor switching. J Mol Biol 388(1):71–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenbach M (2011) Bacterial chemotaxis. American Cancer Society

    Google Scholar 

  • Fahrner KA, Ryu WS, Berg HC (2003) Biomechanics: bacterial flagellar switching under load. Nature 423(6943):938

    CAS  PubMed  Google Scholar 

  • Fang X, Gomelsky M (2010) A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol 76(5):1295–1305

    CAS  PubMed  Google Scholar 

  • Fukuoka H, Wada T, Kojima S, Ishijima A, Homma M (2009) Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol Microbiol 71(4):825–835

    CAS  PubMed  Google Scholar 

  • Fukuoka H, Inoue Y, Terasawa S, Takahashi H, Ishijima A (2010) Exchange of rotor components in functioning bacterial flagellar motor. Biochem Biophys Res Commun 394(1):130–135

    CAS  PubMed  Google Scholar 

  • Fung DC, Berg HC (1995) Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375(6534):809–812

    CAS  PubMed  Google Scholar 

  • Gabel CV, Berg HC (2003) The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proc Natl Acad Sci USA 100(15):8748–8751

    CAS  PubMed  Google Scholar 

  • Harapanahalli AK, Younes JA, Allan E, van der Mei HC, Busscher HJ (2015) Chemical signals and mechanosensing in bacterial responses to their environment. PLoS Pathog 11(8):e1005057

    PubMed  PubMed Central  Google Scholar 

  • Harshey RM (1994) Bees aren’t the only ones: swarming in gram-negative bacteria. Mol Microbiol 13(3):389–394

    CAS  PubMed  Google Scholar 

  • Harshey RM (2003) Bacterial motility on a surface: Many ways to a common goal. Annu Rev Microbiol 57(1):249–273

    CAS  PubMed  Google Scholar 

  • Harshey RM, Partridge JD (2015) Shelter in a swarm. J Mol Biol 427(23):3683–3694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7(4):263–273

    CAS  PubMed  Google Scholar 

  • Heo M, Nord AL, Chamousset D, van Rijn E, HJE Beaumont, Pedaci F (2017) Impact of fluorescent protein fusions on the bacterial flagellar motor. Sci Rep 7(1):12583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69(2):376–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hosking ER, Vogt C, Bakker EP, Manson MD (2006) The Escherichia coli MotAB proton channel unplugged. J Mol Biol 364(5):921–937

    CAS  PubMed  Google Scholar 

  • Hotani H (1976) Light microscope study of mixed helices in reconstituted Salmonella flagella. J Mol Biol 106(1):151–166

    CAS  PubMed  Google Scholar 

  • Hotani H (1982) Micro-video study of moving bacterial flagellar filaments: III. Cyclic transformation induced by mechanical force. J Mol Biol 156(4):791–806

    CAS  PubMed  Google Scholar 

  • Hug I, Deshpande S, Sprecher KS, Pfohl T, Jenal U (2017) Second messenger–mediated tactile response by a bacterial rotary motor. Science 358(6362):531–534

    CAS  PubMed  Google Scholar 

  • Imazawa R, Takahashi Y, Aoki W, Sano M, Ito M (2016) A novel type bacterial flagellar motor that can use divalent cations as a coupling ion. Sci Rep 6:19773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwazawa J, Imae Y, Kobayasi S (1993) Study of the torque of the bacterial flagellar motor using a rotating electric field. Biophys J 64(3):925–933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385–407

    CAS  PubMed  Google Scholar 

  • Jenal U, White J, Shapiro L (1994) Caulobacter flagellar function, but not assembly, requires FliL, a non-polarly localized membrane protein present in all cell types. J Mol Biol 243(2):227–244

    CAS  PubMed  Google Scholar 

  • Kamiya R, Asakura S (1976a) Helical transformations of Salmonella flagella in vitro. J Mol Biol 106(1):167–186

    CAS  PubMed  Google Scholar 

  • Kamiya R, Asakura S (1976b) Flagellar transformations at alkaline pH. J Mol Biol 108(2):513–518

    CAS  PubMed  Google Scholar 

  • Kaplan M, Ghosal D, Subramanian P, Oikonomou CM, Kjaer A, Pirbadian S, Ortega DR, Briegel A, El-Naggar MY, Jensen GJ (2019) The presence and absence of periplasmic rings in bacterial flagellar motors correlates with stator type. eLife 8:e43487

    PubMed  PubMed Central  Google Scholar 

  • Kim EA, Price-Carter M, Carlquist WC, Blair DF (2008) Membrane segment organization in the stator complex of the flagellar motor: implications for proton flow and proton-induced conformational change. Biochemistry 47(43):11332–11339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima S (2015) Dynamism and regulation of the stator, the energy conversion complex of the bacterial flagellar motor. Curr Opin Microbiol 28:66–71

    CAS  PubMed  Google Scholar 

  • Kojima S, Blair DF (2001) Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40(43):13041–13050

    CAS  PubMed  Google Scholar 

  • Kojima S, Imada K, Sakuma M, Sudo Y, Kojima C, Minamino T, Homma M, Namba K (2009) Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Mol Microbiol 73(4):710–718

    CAS  PubMed  Google Scholar 

  • Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15(12):740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krasteva PV, Fong JCN, Shikuma NJ, Beyhan S, Navarro MVAS, Fitnat H. Yildiz, Sondermann H (2010) Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327(5967):866–868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lam K-H, Ip W-S, Lam Y-W, Chan S-O, Ling TK-W, Au SW-N (2012) Multiple conformations of the FliG C-terminal domain provide insight into flagellar motor switching. Structure (London, England, 1993) 20(2):315–325

    CAS  Google Scholar 

  • Lauga E (2016) Bacterial hydrodynamics. Annu Rev Fluid Mech 48:105–130

    Google Scholar 

  • Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443(7109):355–358

    CAS  PubMed  Google Scholar 

  • Lee SY, Cho HS, Pelton JG, Yan D, Henderson RK, King DS, Huang L, Kustu S, Berry EA, Wemmer DE (2001) Crystal structure of an activated response regulator bound to itsytarget. Nat Struct Biol 8(1): 52–56

    CAS  PubMed  Google Scholar 

  • Lee LK, Ginsburg MA, Crovace C, Donohoe M, Stock D (2010) Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 466(7309):996–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lele PP, Branch WR, Nathan JVS, Berg CH (2012) Mechanism for adaptive remodeling of the bacterial flagellar switch. Proc Natl Acad Sci USA 109(49):20018–20022

    CAS  PubMed  Google Scholar 

  • Lele PP, Hosu BG, Berg HC (2013) Dynamics of mechanosensing in the bacterial flagellar motor. PNAS 110(29):11839–11844

    CAS  PubMed  Google Scholar 

  • Li J, Swanson RV, Simon MI, Weis RM (1995) The response regulators CheB and CheY exhibit competitive binding to the kinase CheA. Biochemistry 34(45):14626–14636

    CAS  PubMed  Google Scholar 

  • Li N, Kojima S, Homma M (2011) Characterization of the periplasmic region of PomB, a Na+-driven flagellar stator protein in Vibrio alginolyticus. J Bacteriol 193(15):3773–3784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin T-S, Zhu S, Kojima S, Homma M, Lo C-J (2018) FliL association with flagellar stator in the sodium-driven Vibrio motor characterized by the fluorescent microscopy. Sci Rep 8(1):11172

    PubMed  PubMed Central  Google Scholar 

  • Lloyd SA, Blair DF (1997) Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J Mol Biol 266(4):733–744

    CAS  PubMed  Google Scholar 

  • Lo CJ, Leake MC, Berry RM (2006) Fluorescence measurement of intracellular sodium concentration in single escherichia coli cells. Biophys J 90(1):357–365

    CAS  PubMed  Google Scholar 

  • Lo CJ, Leake MC, Pilizota T, Berry RM (2007) Nonequivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load. Biophys J 93(1):294–302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lo CJ, Sowa Y, Pilizota T, Berry RM (2013) Mechanism and kinetics of a sodium-driven bacterial flagellar motor. Proc Natl Acad Sci USA 28(110):2544

    Google Scholar 

  • Macnab RM, Ornston MK (1977) Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J Mol Biol 112(1):1–30

    CAS  PubMed  Google Scholar 

  • Ma Q, Sowa Y, Baker MAB, Bai F (2016) Bacterial flagellar motor switch in response to CheY-P regulation and motor structural alterations. Biophys J 110(6):1411–1420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maki-Yonekura S, Yonekura K, Namba K (2010) Conformational change of flagellin for polymorphic supercoiling of the flagellar filament. Nat Struct Mol Biol 17(4):417–422

    CAS  PubMed  Google Scholar 

  • Mandadapu KK, Nirody JA, Berry RM, Oster G (2015) Mechanics of torque generation in the bacterial flagellar motor. Proc Natl Acad Sci USA 112(32):E4381–E4389

    CAS  PubMed  Google Scholar 

  • Manson MD, Tedesco PM, Berg HC (1980) Energetics of flagellar rotation in bacteria. J Mol Biol 138(3):541–561

    CAS  PubMed  Google Scholar 

  • Mao H, Cremer PS, Manson MD (2003) A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc Natl Acad Sci USA 100(9):5449–5454

    CAS  PubMed  Google Scholar 

  • Meister M, Lowe G, Berg HC (1987) The proton flux through the bacterial flagellar motor. Cell 49(5):643–650

    CAS  PubMed  Google Scholar 

  • Minamino T, Imada K (2015) The bacterial flagellar motor and its structural diversity. Trends Microbiol 23(5):267–274

    CAS  PubMed  Google Scholar 

  • Morimoto YV, Minamino T (2014) Structure and function of the bi-directional bacterial flagellar motor. Biomolecules 4:217–234

    PubMed  PubMed Central  Google Scholar 

  • Morimoto VY, Nakamura S, Kami-ike N, Namba K, Minamino T (2010) Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Mol Microbiol 78(5):1117–1129

    CAS  PubMed  Google Scholar 

  • Morimoto YV, Nakamura S, Hiraoka KD, Namba K, Minamino T (2013) Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation. J Bacteriol 195(3):474–481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motaleb MA, Pitzer JE, Sultan SZ, Liu J (2011) A novel gene inactivation system reveals altered periplasmic flagellar orientation in a Borrelia burgdorferi fliL mutant. J Bacteriol 193(13):3324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura S, Minamino T, Kami-ike N, Kudo S, Namba K (2014) Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor. Biophysics 10:35–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishihara Y, Kitao A (2015) Gate-controlled proton diffusion and protonation-induced ratchet motion in the stator of the bacterial flagellar motor. Proc Natl Acad Sci USA 112:7737–7742

    CAS  PubMed  Google Scholar 

  • Nord AL, Sowa Y, Steel BC, Lo C-J, Berry RM (2017) Speed of the bacterial flagellar motor near zero load depends on the number of stator units. Proc Natl Acad Sci USA 114(44):11603–11608

    CAS  PubMed  Google Scholar 

  • Nord AL, Gachon E, Perez-Carrasco R, Nirody JA, Barducci A, Berry RM, Pedaci F (2017) Catch bond drives stator mechanosensitivity in the bacterial flagellar motor. Proc Natl Acad Sci USA 114(49):12952–12957

    CAS  PubMed  Google Scholar 

  • Partridge JD, Harshey RM (2013) Swarming: flexible roaming plans. J Bacteriol 195(5):909–918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Partridge JD, Nieto V, Harshey RM (2015) A new player at the flagellar motor: FliL controls both motor output and bias. mBio 6(2):e02367

    Google Scholar 

  • Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol Cell 38(1):128–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paulick A, Delalez NJ, Brenzinger S, Steel BC, Berry RM, Armitage JP, Thormann KM (2015) Dual stator dynamics in the Shewanella oneidensis MR-1 flagellar motor. Mol Microbiol 96(5):993–1001

    CAS  PubMed  Google Scholar 

  • Persat A (2017) Bacterial mechanotransduction. Curr Opin Microbiol 36:1–6

    CAS  PubMed  Google Scholar 

  • Pourjaberi SNS, Terahara N, Namba K, Minamino T (2017) The role of a cytoplasmic loop of MotA in load-dependent assembly and disassembly dynamics of the MotA/B stator complex in the bacterial flagellar motor. Mol Microbiol 106(4):646–658

    CAS  PubMed  Google Scholar 

  • Purcell EM (1977) Life at low reynolds number. Am J Phys 45(1):3–11

    Google Scholar 

  • Raha M, Sockett H, Macnab RM (1994) Characterization of the fliL gene in the flagellar regulon of Escherichia coli and Salmonella typhimurium. J Bacteriol 176(8):2308–2311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopala SV, Titz B, Goll J, Parrish JR, Wohlbold K, McKevitt MT, Palzkill T, Mori H, Finley RL, Uetz P (2007) The protein network of bacterial motility. Mol Sys Biol 3:128

    Google Scholar 

  • Reid SW, Leake MC, Chandler JH, Lo CJ, Armitage JP, Berry RM (2006) The maximum number of torque-generating units in the flagellar motor of escherichia coli is at least 11. Proc Natl Acad Sci USA 103(21):8066–8071

    CAS  PubMed  Google Scholar 

  • Römling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57(3):629–639

    PubMed  Google Scholar 

  • Ryjenkov DA, Simm R, Römling U, Gomelsky M (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281(41):30310–30314

    CAS  PubMed  Google Scholar 

  • Ryu WS, Berry RM, Berg HC (2000) Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403(6768):444–447

    CAS  PubMed  Google Scholar 

  • Sagi Y, Khan S, Eisenbach M (2003) Binding of the chemotaxis response regulator CheY to the isolated, intact switch complex of the bacterial flagellar motor: lack of cooperativity. J Biol Chem 278(28):25867–25871

    CAS  PubMed  Google Scholar 

  • Samatey FA, Matsunami H, Imada K, Nagashima S, Shaikh TR, Thomas DR, Chen JZ, Derosier DJ, Kitao A, Namba K (2004) Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 431(7012):1062–1068

    CAS  PubMed  Google Scholar 

  • Samuel AD, Berg HC (1995) Fluctuation analysis of rotational speeds of the bacterial flagellar motor. Proc Natl Acad Sci USA 92(8):3502–3506

    CAS  PubMed  Google Scholar 

  • Samuel AD, Berg HC (1996) Torque-generating units of the bacterial flagellar motor step independently. Biophys J 71(2):918–923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santiveri, Mònica and Roa-Eguiara, Aritz and Kuhne, Caroline and Wadhwa, Navish and Berg, Howard C and Erhardt, Marc and Taylor, Nicholas MI (2020) Structure and function of stator units of the bacterial flagellar motor. bioRxiv, Cold Spring Harbor Laboratory

    Google Scholar 

  • Sarkar MK, Paul K, Blair D (2010) Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli. Proc Natl Acad Sci USA 107(20):9370–9375

    CAS  PubMed  Google Scholar 

  • Sato K, Nakamura S, Kudo S, Toyabe S (2019) Evaluation of the duty ratio of the bacterial flagellar motor by dynamic load control. Biophys J 116(10):1952–1959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmer T, Jenal U (2009) Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7(10):724–735

    CAS  PubMed  Google Scholar 

  • Schoenhals GJ, Macnab RM (1999) FliL is a membrane-associated component of the flagellar basal body of Salmonella. Microbiology 145(Pt 7):1769–1775

    CAS  PubMed  Google Scholar 

  • Segura A, Duque E, Hurtado A, Ramos JL (2001) Mutations in genes involved in the flagellar export apparatus of the solvent-tolerant Pseudomonas putida DOT-T1E strain impair motility and lead to hypersensitivity to toluene shocks. J Bacteriol 183(14):4127–4133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Hui and Ma, Shuwen and Zhang, Rongjing and Yuan, Junhua (2019) A hidden state in the turnover of a functioning membrane protein complex. Science advances, American Association for the Advancement of Science 5(3):eaau6885

    Google Scholar 

  • Silverman M, Simon M (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249(5452):73

    CAS  PubMed  Google Scholar 

  • Simm R, Morr M, Kader A, Nimtz M, Römling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53(4):1123–1134

    CAS  PubMed  Google Scholar 

  • Son K, Guasto JS, Stocker R (2013) Bacteria can exploit a flagellar buckling instability to change direction. Nat Phys 9(8):494–498

    CAS  Google Scholar 

  • Sourjik V, Berg HC (2002) Receptor sensitivity in bacterial chemotaxis. Proc Natl Acad Sci USA 99(1):123–127

    CAS  PubMed  Google Scholar 

  • Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41(2):103–132

    CAS  PubMed  Google Scholar 

  • Sowa Y, Hotta H, Homma M, Ishijima A (2003) Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J Mol Biol 327(5):1043–10451

    CAS  PubMed  Google Scholar 

  • Sowa Y, Rowe AD, Leake MC, Yakushi T, Homma M, Ishijima A, Berry RM (2005) Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437(7060):916–919

    CAS  PubMed  Google Scholar 

  • Sowa Y, Homma M, Ishijima A, Berry RM (2014) Hybrid-fuel bacterial flagellar motors in Escherichia coli. Proc Natl Acad Sci USA 111(9):3436–3441

    CAS  PubMed  Google Scholar 

  • Stolz B, Berg HC (1991) Evidence for interactions between MotA and MotB, torque-generating elements of the flagellar motor of Escherichia coli. J Bacteriol 173(21):7033–7037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stock D, Namba K, Lee LK (2012) Nanorotors and self-assembling macromolecular machines: the torque ring of the bacterial flagellar motor. Current opinion in biotechnology, Elsevier 23(4):545–554

    CAS  Google Scholar 

  • Suaste-Olmos F, Domenzain C, Mireles-Rodríguez JC, Poggio S, Osorio A, Dreyfus G, Camarena L (2010) The flagellar protein FliL is essential for swimming in Rhodobacter sphaeroides. J Bacteriol 192(23):6230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Morimoto YV, Oono K, Hayashi F, Oosawa K, Kudo S, Nakamura S (2019) Effect of the MotA(M206I) mutation on torque generation and stator assembly in the Salmonella H+-driven flagellar motor. J Bacteriol 201(6):e00727–e00718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terahara N, Krulwich TA, Ito M (2008) Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors. Proc Natl Acad Sci USA 105(38):14359–14364

    CAS  PubMed  Google Scholar 

  • Terahara N, Sano M, Ito M (2012) A Bacillus flagellar motor that can use both Na+ and K+ as a coupling ion is converted by a single mutation to use only Na+. PloS one 7(9):e46248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terahara N, Noguchi Y, Nakamura S, Kami-Ike N, Ito M, Namba K, Minamino T (2017) Load- and polysaccharide-dependent activation of the Na-type MotPS stator in the Bacillus subtilis flagellar motor. Sci Rep 7:46081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terahara N, Kodera N, Uchihashi T, Ando T, Namba K, Minamino T (2017) Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor. Sci Adv 3(11):eaao4119

    Google Scholar 

  • Thormann KM, Paulick A (2010) Tuning the flagellar motor. Microbiology 156:1275–1283

    CAS  PubMed  Google Scholar 

  • Tipping MJ, Delalez NJ, Lim R, Berry RM, Armitage JP (2013) Load-dependent assembly of the bacterial flagellar motor. mBio 4(4):e00551–e00513

    Google Scholar 

  • Tipping JM, Steel CB, Delalez JN, Berry MR, Armitage PJ (2013) Quantification of flagellar motor stator dynamics through in vivo proton-motive force control. Mol Microbiol 87(2):338–347

    CAS  PubMed  Google Scholar 

  • Toker AS, Macnab RM (1997) Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY. J Mol Biol 273(3):623–634

    CAS  PubMed  Google Scholar 

  • Turner L, Ryu WS, Berg HC (2000) Real-time imaging of fluorescent flagellar filaments. J Bacteriol 182(10):2793–2801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tusk SE, Delalez NJ, Berry RM (2018) Subunit exchange in protein complexes. J Mol Biol 430:4557–4579

    CAS  PubMed  Google Scholar 

  • Van Dellen KL, Houot L, Watnick PI (2008) Genetic analysis of Vibrio cholerae monolayer formation reveals a key role for δψ in the transition to permanent attachment. J Bacteriol 190(24):8185–8196

    PubMed  PubMed Central  Google Scholar 

  • van Oene MM, Dickinson LE, Cross B, Pedaci F, Lipfert J, Dekker NH (2017) Applying torque to the Escherichia coli flagellar motor using magnetic tweezers. Sci Rep 7:43285

    PubMed  PubMed Central  Google Scholar 

  • Vladimirov N, Sourjik V (2009) Chemotaxis: how bacteria use memory. J Biol Chem 390:1097

    CAS  Google Scholar 

  • Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5(12):1024–1037

    CAS  PubMed  Google Scholar 

  • Wang R, Wang F, He R, Zhang R, Yuan J (2018) The second messenger c-di-GMP adjusts motility and promotes surface aggregation of bacteria. Biophys J 115(11):2242–2249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Wang X, Liu J, Nememan I, Singh AH, Weiss H, Levin BR (2011) The population dynamics of bacteria in physically structured habitats and the adaptive virtue of random motility. Proc Natl Acad Sci USA 108(10):4047–4052

    CAS  PubMed  Google Scholar 

  • Welch M, Oosawa K, Aizawa S, Eisenbach M (1993) Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc Natl Acad Sci USA 90(19):8787–8791

    CAS  PubMed  Google Scholar 

  • Wolfe AJ, Visick KL (2008) Get the message out: Cyclic-di-GMP regulates multiple levels of flagellum-based motility. J Bacteriol 190(2):463–475

    CAS  PubMed  Google Scholar 

  • Yakushi T, Yang J, Fukuoka H, Homma M, Blair DF (2006) Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli. J Bacteriol 188(4):1466–1472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita I, Hasegawa K, Suzuki H, Vonderviszt F, Mimori-Kiyosue Y, Namba K (1998) Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction. Nat Struct Biol 5(2): 125–132

    CAS  PubMed  Google Scholar 

  • Yonekura K, Maki-Yonekura S, Namba K (2003) Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424(6949):643–650

    CAS  PubMed  Google Scholar 

  • Yuan J, Berg HC (2008) Resurrection of the flagellar rotary motor near zero load. Proc Natl Acad Sci USA 105(4):1182–1185

    CAS  PubMed  Google Scholar 

  • Yuan J, Berg CH (2013) Ultrasensitivity of an adaptive bacterial motor. J Mol Biol 425:1760–1764

    CAS  PubMed  Google Scholar 

  • Yuan J, Fahrner KA, Berg HC (2009) Switching of the bacterial flagellar motor near zero load. J Mol Biol 390(3):394–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Branch RW, Hosu BG, Berg HC (2012) Adaptation at the output of the chemotaxis signalling pathway. Nature 484(7393):233–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, He R, Zhang R, Yuan J (2018) Motor adaptive remodeling speeds up bacterial chemotactic adaptation. Biophys J 114(5):1225–1231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Blair DF (1997) Residues of the cytoplasmic domain of mota essential for torque generation in the bacterial flagellar motor. J Mol Biol 273(2):428–439

    CAS  PubMed  Google Scholar 

  • Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, Braun TF, Blair DF (1998) Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J Bacteriol 180(10):2729–2735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Lloyd SA, Blair DF (1998) Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci USA 95(11):6436–6441

    CAS  PubMed  Google Scholar 

  • Zhu S, Takao M, Li N, Sakuma M, Nishino Y, Homma M, Kojima S, Imada K (2014) Conformational change in the periplamic region of the flagellar stator coupled with the assembly around the rotor. Proc Natl Acad Sci USA 111(37):13523–13528

    CAS  PubMed  Google Scholar 

  • Zhu S, Kumar A, Kojima S, Homma M (2015) FliL associates with the stator to support torque generation of the sodium-driven polar flagellar motor of Vibrio. Mol Microbiol 98(1):101–110

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the ANR FlagMotor project grant ANR-18-CE30-0008 of the French Agence Nationale de la Recherche. The CBS is a member of the France-BioImaging (FBI) and the French Infrastructure for Integrated Structural Biology (FRISBI), 2 national infrastructures supported by the French National Research Agency (ANR-10-INBS-04-01 and ANR-10-INBS-05, respectively).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nord, A.L., Pedaci, F. (2020). Mechanisms and Dynamics of the Bacterial Flagellar Motor. In: Duménil, G., van Teeffelen, S. (eds) Physical Microbiology. Advances in Experimental Medicine and Biology, vol 1267. Springer, Cham. https://doi.org/10.1007/978-3-030-46886-6_5

Download citation

Publish with us

Policies and ethics